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We know the answer to the question in the title of the talk:

Here.

By “here” we mean a particular point in space (and depending

on the context, time).

The point of this talk is points.
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In my elementary school book a point was defined as:

A Geometrical Entity without Dimension

I must confess that after reading it I was none the wiser about

what a point is

Probably because I was convinced I knew what a point is. I could

produce them at will with my biro. Or better with a sharper pin,

or better. . .

Things are not so simple. . .
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Euclid defined a point as That which has no part

The highest authority I can think of, Wikipedia, states:

In Euclidean geometry, a point is a primitive notion upon which

the geometry is built.

Which fits well with what I was thinking in first grade, but it is

not satisfactory at all ages. . .

Let’s get to the point.
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Points are ubiquitous in both the common language, physics and

mathematics, but are we sure we are always talking of the same

thing?

We usually think of points as something elementary and therefore

“small”. In physics this may be misleading.

In astrophysics a point may be a galaxy, or even a cluster of galaxies.

Before relativity, points in space and points in time were com-

pletely different objects for physicists. Points of time have a

different name (instants).

Relativity introduces spacetime. Points become events. Gravity

curves spacetime. Even if elementary, events implicitly assume

some inner structure.
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In some sense in physics points are “the places were things are”, which of

course does not mean anything, unless we give a mathematic structure.

In classical mechanics we deal with elementary structures, point particles, and

describe the state of motion by giving position and velocity, a point in phase

space.

The structure is not given to points, which remain elementary,
but to the relations among them.

Here we enter the real of mathematics. Define familiar mathematical objects:

topology, differential, symplectic forms, (co)tangents . . .

The notion of point is generalised, extended rigid bodies are described by a

point in a higher dimensional space, fluids need infinite dimensions, but apart

from mathematical difficulties, there are no problems in describing physical

systems as points, and dynamics is their evolution in time.
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Everything changed with Quantum Mechanics.

The first example of a Noncommutative Geometry.

Heisenberg uncertainty principle disposed with the idea of in-

finitesimal point in phase space. We cannot know with absolute

precision at the same time position and velocity of a particle.
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A very heuristic explanation is given by the so called Heisenberg Microscope.

7



Position and momentum, become noncommuting operators on a Hilbert

space. The closest you may get to the concept of points are coherent states.

The physics of quantum phase space for nonrelativistic point particles is rela-

tively well known. The founding fathers Bohr, Heisenberg, Dirac, Pauli . . . started

the understanding of physics, and Weyl, Hilbert, Von Neumann and other gave

the necessary mathematical framework.

I dare not affirm that quantum mechanics is well understood, but I venture

to say that we have a solid mathematical framework with which we can work.
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So far we had used only two of the fundamental constants: speed

of light c , and Planck’s constant ~ .

If we attempt to define points in space(time) at very short dis-

tance we run into trouble if we put together quantum mechanics

and gravity.

There is a phenomenon noticed for the first time by Bronstein in

1938, but presented independently in a modern and most terse

way by Doplicher, Fredenhagen and Roberts in 1994.

I will present a caricature of these arguments, which however

captures the main idea in a nontechnical way.

It is a variant of the Heisenberg microscope described above.
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We are interested only is space, and not momentum, for which there is no

limitation in quantum mechanics to an arbitrary precise measurement of x

Including gravity there is a length scale obtained combining the c , ~ and

Newton’s constant: ` =
√

~G
c3 ' 10−33cm

In order to “measure” the position of an object, and hence the “point” in

space, one has to use a very small probe, which has to be very energetic,

but on the other side general relativity tells us that, if too much energy is

concentrated in a small region, a black hole is formed.

It is possibly (ideally) to detect the BH, but not to “see” anything inside its

horizon. Again there is a limit to the precision of the measurement.

For a rigorous statement we would need a full theory of quantum gravity.

A theory which do not (hopefully yet) posses.
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This is but an example of quantum spaces, loop quantum gravity

is another. These spaces have in general in common the fact that

the concept of point, of localisation, ceases to have a meaning

below a certain scale.

Here we come to the question I asked in the title: Do we know

where we are?

I will not attempt to define knowledge, not in front of this audi-

ence. . .

I will have instead a “tempered operationalist” position, as we

did in my paper in Sinthese with Huggett and Menon, which I

nearly verbatim quote in the following.
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A necessary condition on a concept having physical content, and

therefore to be a subject of knowledge, is that it is possible, by

the lights of physical theory, to describe a (perhaps idealised)

measurement procedure for a magnitude associated with the

concept.

In a sense, inverting Ryle, we need a “machine in the ghost” to

be able to elect a concept to the rank of being knowable.

We refer to such concepts as operationally definable. To give

operationalism substance, one has to specify what measuring

operations are available; since we are interested in the possibility

of operationalizing points of space.
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We need to be probabilistic, this is an absolute necessity if we

consider a quantized theory, but also classically, every measure-

ment is a probabilistic procedure

This is because any measuring device is affected by implicit,

technological, limitations, and therefore every measure has an

error.

The difference classical/quantum is the fact that in quantum

spaces the uncertainty is inherent in the theory.

I note, in passing the importance of the presence of a dimen-

sionful, physical scale.
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In this context a measuring device is a mathematical entity, idealizing an

actual physical instrument.

I will make an illustrative example in one dimension.

I will use a few formulas, but will illustrate with pictures.

I will approximate the classical state, a particle in a point with a

Gaussian state, centered in a point x0 .

ρ =
1
√
πα

e
−(x−x0)2

α2

When α is small the state is well localised.
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I will describe the measuring device, centred in x1 , with a Gaus-

sian as well, with different normalisations:

1
√
πβ
g1(x) = e

−(x−x1)2

β2

The probability of a measurement is proportional to (for simplic-

ity set α = β ):

e
−(x0−x1)2

α2

This quantity goes quickly to zero as the distance between x0

and x1 increases.

The decrease is more dramatic when α is big.
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The interpretation is that our device measures practically zero,

unless it fits exactly the position of the state.

Even if the framework is probabilistic, the parameter α can be

arbitrarily large, and the state arbitrarily sharp.

Things change dramatically if we instead consider a quantum

space. As an example I will consider a two dimensional space

in which the two coordinates do not commute, i.e. if I multiply

xy I get a different result from yx . This is represented by the

formula:

[x, y] = iθ
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I have chosen this example because it is basically the basis of quantum me-

chanics, for which we have a very well developed formalism, and interpreta-

tions.

Different varieties of quantum spaces and noncommutative geometry, more

realisitic, are considered. They are technically more cumbersome.

Indeed if you prefer you may iterpret what I will say in terms of phase space, with the two

coordinates representing position and momentum.

The formalism needed is the theory of operators, states, Hilbert spaces.

Central to this formalism and its interpretation is the fact that

all measurements are probabilistic
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I stress the fact that the there is nothing misteriuous at this stage about the

appearance of probabilities

Every measurement process (of a continuous quantity) is necessarily a prob-

ability density, also in classical physics.

But while in classical physics the limit is simply due to the pre-

cision of the devices, in quantum mechanics this is an actual

limit.

And I stress again, this is possible (or due?) to he presence of

dimensionful physical scales
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I like to see the change of paradigm from the point of view of a noncommu-

tative geometry.

I started this talk from the concept of point, and said it is at the basis of

geometry.

It turns out that it is possible to equally well describe geometry in a dual way,

starting from functions (a physicists would say fields) and their relations,

which form an algebra.

This is a programme stated in the forties by Gelfand and Naimark, and vigorously impulsed

by Alain Connes.

It turns out that the properties of usual spaces are encoded in the algebra

of functions defined on them, functions can be represented as operators on

Hilbert spaces, and other properties (metric, differential calculus . . . ) are

encoded by the action of other operators.
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For example topology (relations among points) is encoded in the algebra of

continuous functions, smoothness i that of differentiable ones, distances can

be obtained with the use of differential operator and so on.

Points can be reconstructed as (pure) states of the algebra.

States are a well defined mathematical object, which associates a number to

a en element of the algebra, subject to various conditions.

Pure states we need are simply the ones which evaluate the functions at a

point. Non-pure (mixed) states are density probabilities, like the Gaussians

earlier.
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Once we have translated geometry into its algebraic counterpart, quantization

consists in considering a noncommutative algebra, and repeat the analysis

mutatis mutandis.

We need to retain some vestige of the classical state, which should be ob-

tainable when the scale is very small.

This is can be obtained considering a deformation of the commutative algebra

of functions. Introducing a new product so that the product depends on the

order of the factors, fo example

x ? y − y ? x = iθ

Or more generally f(x, y) ? g(x, y) 6= g(x, y) ? f(x, y)

In such a way that when θ → 0 the algebra becomes the original, commutative one.
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There is a new algebra, made of the same functions as before, and it is

tempting to consider the presence of the underlying space.

But in attempting to repeat the analysis which lead us to find points from

the algebra as states, we encounter the obstacle that the structure of states

of this new algebra is different.

For example the simple product of two Gaussians as before, giving the prob-

ability to find a particle somewhere, made with the ? product gives a non

real oscillating function, without an obvious maximum.

There are other states, for example the equivalent of coherent states, which

“resemble” localisation in a point, as long as we do not try to make them

too sharply peaked.

Points are operationally definable because of Heisenberg’s un-
certainty!
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I will not go deeper into technicalities, because I want to stimu-

late a discussion (fighting the incoming buffet) on the ontology

of such a view of spacetime.

Points where our staring point. Speaking in what for me is for-

eign language, it can be said that they are part of the necessary

ontology.

I stress again that they are not a symbolic device made to ex-

plain things, to reduce things to a know situation. Such as the

ocean water waves are used to explain electromagnetic (or even

probability) waves.

It is impossible to even start the discourse without points, even

at an abstract formal level.
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Yet, while we need points, we know that the novel paradigm
necessitates their negation, in favour of other concepts.

To quote the paper with Huggett and Menon (who speak natively
the foreign language above:

In theories of noncommutative space, we again assume - but this time for

reductio - that there is an ontic state corresponding to an arbitrarily precisely

localised particle. We construct the analogue of an epistemic state: a density

operator. We then attempt to localise this epistemic state to an arbitrarily

small area and discover that this leads to ascriptions of negative probabilities.

Since these measures are not elements of the state space, this signals a

pathology. The only way to avoid this pathology, we argue, is to drop the

assumption that there is an ontic state corresponding to an arbitrarily precisely

located particle. Thus, even in principle, it is not possible, to localise a particle

below a certain area. Operationally, then, such areas - and a fortiori points -

are undefinable.
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To conclude

Do we know where are we?
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