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One often starts a talk with thanking the organisers, and I am
no exception in thanking TRG, Sanatan, Sunajay and the other
organisers for making this conference happen. But I would like
to add another acknowledgements in the form of a quote from
my 1985 doctoral thesis:

“After five years in Syracuse there are many people I would like
to thank. First, and foremost, my advisor Professor A.P. Bal-
achandran, he taught me most of what I know, and reproached
me for not studying most of what I don’t, and should, know. He
showed me how to work and gave me the honour to be one of
his collaborators and friends. Thanks, Bal!”

In 2026, I were to write a “retirement thesis”, I would not
change a word, except that “five years in Syracuse” would be-
come “forty-six years in Syracuse, Oxford, Trieste, Napoli and
Barcelona”. But the “first and foremost” I would keep.
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Gravity is the theory of (curved) spacetime. Its dynamical vari-

able is spacetime itself, and in fact one way to quantize it is to

consider the metric gµν as field the to quantize.

This attempt has not been completely successful. And I hasten to add that it

is in good company, no attempt has been completely successful. Otherwise

this conference would have been very different. . .

The idea behind the Noncommutative Geometry approach to

Quantum Gravity is that the object to quantize is spacetime

itself, giving thus rise to a Quantum Spacetime. I will concen-

trate on kinematics, describing the space by a noncommutative

algebra, which can be sometimes described by noncommuting

coordinate functions.
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The most famous noncommutative space is the one described

by noncommuting coordinate, whose commutator is constant.

Sometimes it is called DFR (Doplicher, Fredenhagen, Robers)

noncommutativity, or even Moyal or Gronëwold-Moyal, who in-

troduced the deformed product which generalises this kind of

noncommutativity. It also featured in the famous article of

Seiberg and Witten on noncommutative geometry and strings.

[xµ, xν] = iθµν

This is a spacetime replica of the quantum phase space canonical

commutation relations, with ~ substituted by θ . This meant

that we could use all the experience and technology acquired for

quantum mechanics.
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The unpalatable issue is that this kind of noncommutativity

breaks Lorentz invariance, although it maintains translation in-

variance

This was not a problem for quantum mechanics since there is not, in general, a symmetry

rotating coordinates into momenta. For spacetime Lorentz however transformations are a

must.

The breaking of Lorentz symmetry implies the presence of a fundamental

antisymmetric tensor, i.e. two directions, a vector and a pseudovector, which

would characterize our universe.

These fundamental directions would show up in cosmology, and the recent

data pose stringent limits on this.

Quantization of gravity cannot prescind from symmetries
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We may say that a quantum spacetime will require quantum

symmetries

Quantum Groups and Hopf Algebras developed in parallel to the one of Non-

commutative Geometry, with several intersections.

Of particular interest for us is the deformation of the Poincaré Lie algebra

which goes under the name of κ -Poincaré. I can only mention a few features

of it, since I want to concentrate on the role of the observers. It suffices to

say that the homogeneous space for this quantum symmetry is generated by

the commutation rule

[x0, xi] = iλxi ; [xi, xj] = 0

Later if there is time we will discuss a space which is a variation on this theme.
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I will study this space using the usual techniques of quantum

mechanics. Let me first briefly recall a well known case study:

Quantum Phase Space of a particle.

Phase space is a six-dimensional space spanned by (qi, pi) . Quantization

introduces the commutation relation [qi, pj] = i~δij ,

The most common representations of position and momenta is operators

on L2(R3
q)

q̂iψ(q) = qiψ(q) ; p̂iψ(q) = −i~
∂

∂qi
ψ(q) .
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q̂ ’s and p̂ ’s are unbounded selfadjoint operators with a dense domain. The

spectrum is the real line (for each i ).

They have no eigenvectors but improper eigenfunctions: distributions.

Since the q̂i’s commute it is possible to have a simultaneous improper eigen-

vector of all of them, these are the Dirac distributions δ(q − q̄) for a particular

q̄ vector in R3 For a particular momentum p̄ the improper eigenfunctions

of the p̂i are plane waves eip̄iqi .

Formally, the eigenvalue equation ∂qψ(q) = αψ(q) , α ∈ C3 is solved by eα·q

with a vector α

No function of this kind is square integrable, there are no (proper) eigenfunc-

tions. The operator p̂ is self-adjoint on the domain of absolutely continuous

functions. α must be pure imaginary because the distributions must be well

defined on the domain of selfadjointness of the operators.
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The improper eigenfunctions of momentum are physically interpreted as infi-

nite plane waves of precise frequency. Since plane waves are not vectors of the

Hilbert space there is no quantum state which would give as measure exactly

the value ~k, nevertheless we have all learned to live with this fact, and there

is a well-defined sense in which we talk about “particles of momentum ~k ”.

Implicitly we have chosen q̂i as a complete set of observables, the description

of a quantum state as a function of positions. |ψ(q)|2 (normalized) is the

density probability to find the particle at position q .

The ψ is complex and contains also the information about the density prob-

ability of the momentum operator.

We could have chosen p̂ as complete set. Then we would have the Fourier

transformed φ(p) . It is important that the Fourier transform is an isometry, it

maps normalized functions of positions into normalized functions of momenta.

And we have other choices for complete sets, number operators, angular momentum . . .
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A different observer will have his own Hilbert space, set of ob-

servables, and so on. Unavoidably we have a tensor product.

This is usually not a problem, we know that we can make a

unitary transformation from one set to another. Implicit we have

a coproduct, i.e. a way to put together representations.

Quantum Groups have taught us that there is more than just the

Lie algebra structure, symmetries are described by Hopf Algebra,

since I have to put together representations.

Usually this is done in a cocommutative way, and we do not

notice it. But if the algebra is deformed, so is the group.
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A Hopf Algebra has additional structures in additions to being an algebra,

i.e. a set with two operations and some other properties, think for example

at a Lie algebra or the set of functions on some manifold. The latter is

associative, the former is not (but it has Jacobi).

While a product is a map from two elements of the algebra into a single

one, the coproduct tells how to put together representations, formally it is

a map from one copy of the algebra into the tensor product of two copies.

Something like

∆(f) = f ⊗ 1 + 1⊗ f

which can be seen as a rendition of the Leibnitz rule if the Lie algebra is

represented as differential operators
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or

∆(f) = f ⊗ f

which instead is relevant for the case of functions on a group for which

f(gg′) = f(g)f(g′)

Two more structures, counit and antipode, duals of the unity and the inverse

are important but not relevant for this seminar.
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Earlier we discusse quantum phase space, where the deformation

parameter was ~ .. I now want to reproduce this discussion for

κ -Minkowski, four dimensional space with different commuta-

tion relation and a deformation parameter λ = 1
κ

This is a quantum space, but I will only consider its kinematic,

and leave ~ alone for the moment.

But is a relativistic space, hence we need will worry about Poincaré

transformations.
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Look for a representation of the xµ on L2(R3) :

x̂iψ(x) = xiψ(x)

x̂0ψ(x) = iλ

∑
i

xi∂xi +
3

2

ψ(x) = iλ
(
r∂r +

3

2

)
ψ(x).

Positions are multiplicative operators, time is dilation. The 3/2 factor is

necessary to make the operator symmetric. It is selfadjoint on all absolutely

continuous functions.

For dilations the polar basis is appropriate. The commutation relations and

uncertainty principle become:

[x̂0, cos θ] = [x̂0, eiϕ] = 0 , [x0, r] = iλr.

∆x0∆r ≥
λ

2
|〈r〉|.
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What is the spectrum of the time operator? Monomials in r are formal

solutions of the eigenvalue problem:

iλ
(
r∂r +

3

2

)
rα = iλ(α+

3

2
)rα = λαr

α,

The eigenvalues are real if and only if α = −3
2

+ τ with −∞ < τ < ∞ a real

number.

For momentum we had plane waves, in this case we have the following dis-

tributions

Tτ =
r−

3
2−iτ

λ−iτ
= r−

3
2e−iτ log(rλ)

The distribution has the correct dimension of a length 3/2 , the factor of λ is there to avoid

taking the logarithm of a dimensional quantity. Since λ is a natural scale for the model, its

choice is natural, but not unique.
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For quantum phase space we had as complete set of observables

either three q or three p , connected by a Fourier transform,

For κ -Minkowski we have either (r, θ, ϕ) or (τ, θ, ϕ) , and we

switch among the two with a Mellin transform

ψ(r, θ, ϕ) =
1√
2π

∫ ∞
−∞

dτ r−
3
2e−iτ log(rλ)ψ̃(τ, θ, ϕ) =M−1

[
ψ̃(τ, θ, ϕ), r

]
,

ψ̃(τ, θ, ϕ) =
1√
2π

∫ ∞
0

dr r
1
2eiτ log(rλ)ψ(r, θ, ϕ) =M

[
ψ(r, θ, ϕ),

3

2
+ iτ

]
.

|ψ|2 and |ψ̃|2 can be interpreted as the probabilty density to find the particle

in position r or time τ respectively

15



It is useful to have an idea of the dimensional quantities involved.

Call t the eigenvalue of the time operator x0

c , then τ = t cλ .

c
λ is a dimensional quantity. If we choose for λ the Planck

length then c
λ ∼ 2 · 1043 Hz. In other words if t = 1 s, then

τ = 2 · 1043 , an extremely large number.

If t is of the order of Planck time, then τ ∼ 1 .
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I will now give some examples of localised state, at the origin and away

Consider the following state (chosen to simplify calculations) localised in space

in a small region of size a around a point at distance z0 along the z axis.

ψz0,a(r, θ, ϕ) =

{ √
3λ

2aπ((a+z0)3−z3
0)
, z0 ≤ r ≤ (z0 + a) and cos θ > 1− a

λ

0, otherwise

In the limit a→ 0 the state is localised in z0
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The Mellin transform of this function, integrating out the angular
variables, gives:∫

|ψ̃z0,a|
2 sin θ dθ =

[
a

4π2z0
−

a2

8λ(π2z2
0)

+O(a3)

]

This tends to a constant which vanishes as a→ 0. Localising in
space implies delocalising in time

The series expansion for a around 0 , and z0 around ∞ , are

the same. |ψ̃z0|2 = λ
4π2z0

− aλ
8π2z2

0
+

a2λ
(
7−4τ2

)
192π2z3

0
+ O

(
a3
)

This means that a sharp localization of a particle far away from
the origin implies that the particle cannot be localised in time.
In accordance with the uncertainty for κ -Minkowski.
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It is impossible to sharply localise a state at a point, except at the origin

xi = 0 , which is an exceptional point.

The equivalent of the Gaussians of ordinary quantum mechanics are the log-Gaussians

L(r, r0) = Ne
−(log r−log r0)2

σ2 = e

−

 log
(
r
r0

)
σ

2

e−
9

16σ
2

√
σ(2π)3/4

√
r3

0

They have a maximum in r = r0 , which localises at r = r0 as σ → 0 , and

localises at r = 0 as r0 → 0 , for any value of σ ≥ 0 .
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σ=1.5

σ=1.75

σ=2

σ=2.25
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r
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L(r,r0) r0=exp -σ 2.01

Their Mellin transform are ordinary Gaussians (up to phases and normaliza-

tions) independent on r0

L̃(τ, r0) =
σ

1
2e−

1
4σ

2τ(τ−3i)riτ0
2 4√2π3/4
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In the double limit r0 → 0 and σ →∞ , all 〈rn〉L and all 〈(x0)n〉L
go to zero as σ →∞ .

This is a state localised both in space (at r = 0 ) and in time

(at τ = 0 )

Localisation at arbitrary time is simply achieved multiplying the

state by
(
r
λ

)iτ0

With the usual abuse of notation we will call these state as |oτ〉 .
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We have argued that the origin is a special point. Does this
mean that somewhere in the universe there is “the origin”. A
special position in space singled out by the κ -God?

Implicitly in our discussion, when we were referring to states
we were assuming the existence of an observer measuring the
localisation of states.

This observer is located at the origin, and he can measure with
absolute precision where she is. For him “here” and “now” make
sense. She cannot localise with precision states away from him,
as a consequence of the noncommutativity of κ -Minkowski.

What about other observers? A different observer will be in gen-
eral Poincaré transformed, i.e. translated, rotated and boosted.
These operations are usually performed with an element of the
Poincaré group. But now we have κ -Poincaré!
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Require invariance under the transformation xµ → x′µ = Λµ
ν ⊗ xν + aµ ⊗ 1

But now the coordinate functions on the group are noncommu-

tative, they are (in a particular basis, Zakrzewski)

[aµ, aν] = iλ (δµ0 a
ν − δν0 a

µ) , [Λµν,Λ
ρ
σ] = 0

[Λµν, a
ρ] = iλ

[
(Λµσδ

σ
0 − δµ0) Λρν +

(
Λσνδ

0
σ − δ0

ν

)
ηµρ

]
.

In particular notice that translations are now noncommuting.

With the same commutation relations of the coordinates.
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We represented the κ -Minkowski algebra as operators. But in doing so we

had implicitly chosen an observer.

In order to take into account the fact that there are different observers we

enlarge the algebra (and consequently the space) to include the parameters

of the new observers. We call then new set of states as Pκ

Our (generalised) Hilbert space will now comprise not only functions on space-

time (either functions of r or τ ), but also functions of the a ’s and Λ ’s.

We can represent the κ -Poincaré group faithfully as

aρ = −i λ
2

[
(Λµ

σδσ0 − δµ0) Λρ
ν +

(
Λσ

νδ0
σ − δ0

ν

)
ηµρ
]

Λν
α

∂
∂ωµ

α
+ iλ

2

(
δρ0 qi

∂
∂qi

+ δµi qi
)

+ 1
2
h.c.

Where ω are the parameters of the Lorentz transformation, and the Λ ’s are represented

as multiplicative operators
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We have therefore that, like spacetime, the space of observers is also non-

commutative, and the noncommutativity is only present in the translation

sector.

We now explore the space of observers, seen as states. First consider the

observer located at the origin, which is reached via the identity transformation.

Define |o〉P with the property:

P〈o| f(a,Λ)|o〉P = ε(f) ,

with f(a,Λ) a generic noncommutative function of translations and Lorentz transformation

matrices, and ε the counit.

This state describes the Poincaré transformation between two coincident ob-

servers. The state is such that all combined uncertainties vanish. Coincident

observers are therefore a well-defined concept in κ -Minkowski spacetime.
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A change of observer will transform xµ → x′µ = Λµν ⊗ xν + aµ ⊗ 1

and primed and unprimed coordinates correspond to different ob-

servers.

Identifying x with 1⊗ x we generate an extended algebra P ⊗M which

extends κ -Minkowski by the κ -poincaré group algebra.

This algebra takes into account position states and observables

Remember that, just as we cannot sharply localise position states, neither we

can sharply localise where the observer is.

Since Lorentz transformations commute among themselves, we can however

say if two observers are just rotated with respect to each other
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We can build the action of the position, translation and Lorentz transforma-

tions operator on generic functions of all those variables.

To simplify notations let us consider 1 + 1 dimensions. In this case there are

only two position coordinates, two translations coordinates and one Lorentz

transformation parametrized by ξ

The relations are Λ0
0 = Λ1

1 = cosh ξ , Λ0
1 = Λ1

0 = sinh ξ ,

[a0, a1] = iλa1 , [ξ, a0] = −iλ sinh ξ , [ξ, a1] = iλ (1− cosh ξ) .

And the action on P is

a0 = iλq
∂

∂q
+ iλ sinh ξ

∂

∂ξ
, a1 = q + iλ (cosh ξ − 1)

∂

∂ξ
,
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States (non entangled) will be objects of the kind |g〉 ⊗ |f〉

In particular |g〉 ⊗ |o〉 is a pure translation of the state at the origin.

The new observer measures coordinates with x′ . The expectation values on

(normalised) transformed state is

〈x′µ〉 = 〈g| ⊗ 〈o|x′µ|g〉 ⊗ |o〉 = 〈g|Λµν|g〉〈o|xν|o〉+ 〈g|aµ|g〉〈o|o〉 ,

We get:

〈x′µ〉 = 〈g|aµ|g〉 ,

The expectation value of the transformed coordinates is completely defined by

translations. This is natural, the different observers are comparing positions,

not directions.
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In general

〈x′µ1 . . . x′µn〉 = 〈g|aµ1 . . . aµn|g〉〈o|o〉 = 〈g|aµ1 . . . aµn|g〉 .

Poincaré transforming the origin state |o〉 by a state with wave function

|g〉 in the representation of the κ -Poincaré algebra, the resulting state will

assign, to all polynomials in the transformed coordinates the same expectation

value as what assigned by |g〉 to the corresponding polynomials in aµ.

In other words, the state x′µ is identical to the state of aµ .

All uncertainty in the transformed coodinates ∆x′µ is introduced by the

uncertainty in the state of the translation operator, ∆aµ .

It is also possible to see that the uncertainty of states increases with translation.
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I can summarise saying that all observers can sharply localise

states in their vicinity, and cannot localise states far away from

them.

The apparent paradox of a state badly localisable by Alice, but

which is well localised by Bob, is that Bob herself is badly lo-

calised by Alice, and of course viceversa.

All this is qualitatively perfectly compatible with the principle of relative lo-

cality (Amelino-Camelia, Kowalski-Glickman, Freidel, Smolin), which however

starts in a quite different context: curved momentum space. In this analysis

instead momentum does not appear explicitly, although it is present in the

symmetry.
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One of the tenets of Quantum Mechanics is that the observer

is classical, usually macroscopic, and that therefore we “know”

how to deal with them.

In quantum gravity this may not be the case. While it is true

that the smallness of the Planckian constants suggests this, there

may be amplifying effects, and conceptual aspects to deals with.
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The group algebra approach, where the parameters of the Poincaré transfor-

mations do not commute is the key to understand the observer-dependent

transformations

Transformations relating different frames belong to a noncommutative alge-

bra. Hence localisability limitations.

Alternatively, the deformation can be seen as a deformation of the tensor

product. This is evident in the case of a Drinfeld twist, and I give another

example, based on a twist.
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% -Minkowski or Angular Noncommutativity

[x0, x1] = −i%x2 ; [x0, x2] = i%x1 ; [x0, x3] = 0 ; [x1, xj] = 0

This form of noncommutativity has a long history, Gutt, Lukierski, Woronowicz, Chaichian,

Demichev, Presnajder, Tureanu and more recently Amelino-Camelia, Barcaroli, Loret, Bianco

and Pensato.

A similar version can be built in which x0 and x3 are exchanged. I will not discuss this

variant here.
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Express the commutation relations in cylindrical coordinates (t, ρ, z, ϕ)

“[t, ϕ] = i%”; [t, z] = [t, ρ] = “[ρ, ϕ]” = [ρ, z] = 0

Note that I have put some of the commutators in inverted commas.

We can repeat the previous analysis, but take into account that the angular

variables are not good observables. This explains the inverted commas.

A better expression would be [r, Y (θ, ϕ)] = 0 , where Y is an operator gen-

erated by well defined functions of θ, ϕ .
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This time the uncertainty will be between time and the angular variable. And

one should definitely resist the temptation to write:

���
���

���
��XXXXXXXXXXX

∆t∆ϕ ≥
%

2

In the {ρ, z, ϕ} basis t is represented by the derivation operator −i%∂ϕ .

This operator has Discrete Spectrum!

A change of basis is given by the Fourier series. The eigenstates of momentum

are einϕ , and they are completely delocalised in ϕ
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On the other hand, a state completely localised in ϕ , given by a δ , which

requires a superposition with equal weights of all eivenvalues of time.

δ(ϕ) =
1

2π

∞∑
n=−∞

einϕ

After a time measurement, which has given as result n0% , the system is in

the eigenstate ein0ϕ .

A slightly uncertain state uses a great number of Fourier modes to built a

state peaked around some time, then the corresponding uncertainty is the

angular variable is given by the fact that only a finite set of elements of the

basis are available.

For % Planckian of the quantum of time (also called a chronon), is 5.39 10−44 sec.
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The most accurate measurement of time is ∼ 10−19 sec. Heuristically the

superposition of 1035 quanta of time is needed.

Approximate δ by the Dirichlet nucleus δN =
∑N

n=−N einϕ = 1
2π

sin(N+1

2
)ϕ

sin N

2
ϕ

For N = 5,10,15 .

The needs N ∼ 1035 . Then the first zero of the nucleus is at ϕ ∼ 10−35 . We

may assume this to be the uncertainty in an angle determination. To translate

this as an uncertainty in position we need ρ . For the radius observable

universe ( 1026m ) the uncertainty is of the order of one metre.
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Is this all pervading clicking a feature of our universe? Is time translation

definitely lost? Putting time on a lattice may be disturbing.

Self-adjointness come to the rescue. Anybody who has studied the Aharonov-

Bohm experiment knows that the momentum operator on a compact domain

is a rich operator.

It is self-adjoint on periodic functions, but is also selfadjoint on functions

periodic up to a phase. In this case the eigenfunctions are ei(n+α)ϕ .

The differences between states is unchanged, and the effect is a rigid shift.

This however means that a different choices of selfadjointess domains. Time

translations are undeformed, and two time translated observers will be in

different, but equivalent domains.

In order to compare their results the two observers, again, have to compare

representantions, and this is ruled by a coproduct.
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Noticing that [∂t, ∂ϕ] = 0 , the deformation can be built with a Drinfeld twist.

F(x, y) = exp
{
−
i%

2

(
∂y0

(
x2∂x1 − x1∂x2

)
− ∂x0

(
y2∂y1 − y1∂y2

))}

= exp
{
i%

2

(
∂y0∂ϕx − ∂x0∂ϕy

)}

This deforms the Hopf algebra as
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∆P3 = P3 ⊗ 1 + 1⊗ P3,

∆P0 = P0 ⊗ 1 + 1⊗ P0,

∆P1 = P1 ⊗ cos
(
%

2
P0

)
+ cos

(
%

2
P0

)
⊗ P1 + P2 ⊗ sin

(
%

2
P0

)
− sin

(
%

2
P0

)
⊗ P2,

∆P2 = P2 ⊗ cos
(
%

2
P0

)
+ cos

(
%

2
P0

)
⊗ P2 − P1 ⊗ sin

(
%

2
P0

)
+ sin

(
%

2
P0

)
⊗ P1,

∆M01 = M01 ⊗ cos
(
%

2
P0

)
+ cos

(
%

2
P0

)
⊗M01 +M02 ⊗ sin

(
%

2
P0

)
− sin

(
%

2
P0

)
⊗M02

−P1 ⊗
%

2
M12 cos

(
%

2
P0

)
+
%

2
M12 cos

(
%

2
P0

)
⊗ P1

−P2 ⊗
%

2
M12 sin

(
%

2
P0

)
−
%

2
M12 sin

(
%

2
P0

)
⊗ P2,

∆M02 = M02 ⊗ cos
(
%

2
P0

)
+ cos

(
%

2
P0

)
⊗M02 −M01 ⊗ sin

(
%

2
P0

)
+ sin

(
%

2
P0

)
⊗M01

−P2 ⊗
%

2
M12 cos

(
%

2
P0

)
+
%

2
M12 cos

(
%

2
P0

)
⊗ P2

+P1 ⊗
%

2
M12 sin

(
%

2
P0

)
+
%

2
M12 sin

(
%

2
P0

)
⊗ P1,

∆M03 = M03 ⊗ 1 + 1⊗M03 −
%

2
P3 ⊗M12 +

%

2
M12 ⊗ P3,

∆M12 = M12 ⊗ 1 + 1⊗M12,

∆M13 = M13 ⊗ cos
(
%

2
P0

)
+ cos

(
%

2
P0

)
⊗M13 +M23 ⊗ sin

(
%

2
P0

)
− sin

(
%

2
P0

)
⊗M23

∆M23 = M23 ⊗ cos
(
%

2
P0

)
+ cos

(
%

2
P0

)
⊗M23 −M13 ⊗ sin

(
%

2
P0

)
+ sin

(
%

2
P0

)
⊗M13.
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With this twist we can build a covariant ? product, and field and gauge

theories, as well as the Hopf algebra

(f ? g)(x) = F−1(y, z)f(y)g(z)

∣∣∣∣∣
x=y=z

= fg −
i%

2
(∂ϕf∂0g − ∂0f∂ϕg) +O(%2).

which deforms the addition of momenta

e−ip·x ? e−iq·x = e−i(p+?q)·x,

p+? q = R(q0)p+R(−p0)q,

R(t) ≡


1 0 0 0

0 cos
(
%t
2

)
sin

(
%t
2

)
0

0 − sin
(
%t
2

)
cos

(
%t
2

)
0

0 0 0 1
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With this is it possible to build a field theory. In particular we looked at

φ4 Euclidean scalar theory. The usual arena to look for phenomena like

ultraviolet/infrared mixing.

The deformed conservation of momenta gives a deforms the vertex, but not

of the propagator.

On consequence is that decays are not anymore back to back. I have no time

to go into this.
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Final Remarks (and a postscript)

The main message I want to convey is that quantum gravity will

require Quantum Spacetime.

Quantum Spacetime in turn requires quantum observers.

This is of course true for quantum phase space as well. There

we became (more or less) used to deal with the contradictions

of the quantum/classical interaction. We learned how to deal

with noncommuting observables for example

But a quantum spacetime will pose further challenges and other

layers to our understanding.
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