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Euclid vs. Lorentz

As I said one of the drawbacks of the construction I am presenting is that

mathematics dictates that I define spacetime as an Euclidean space, while

we know that physics requires a Lorentzian signature. Several solutions have

been proposed.

A fully covariant approach to spectral quantum field theory has been attempted, but the full

machinery of this model does not really fit into it

Krein Spaces have been extensively used, an excellent review is the thesis of

Nadir Bizi (Sorbonne), as yet unpublished

A Krein space is (very loosely speaking) a split of the Hilbert space into two

subspaces, one with a positive definite linear form, the other with a negative

one. Then one works separately on the two spaces. An important role is

played by a “fundamental symmetry” which enables the connection with the

Hilbert space
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The construction has very interesting results for an older version of the model,

for which the bosonic action was the curvature two form. Also in this case

you reproduce the bosonic action, without the gravitational background

But the more serious drawback is that it is incompatible with the spectral

action, and as such it is just a classical action. What is lacking is the bound-

ary condition which enables the running of the constants as dictated by the

renormalization group.

A Further alternative is to consider a causal structure which

creates a partial ordering of states, so to reproduce the principal

aspect of physics with a Lorentzian signature

In this talk I will tackle the problem using the procedure called

Wick rotation.
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The use of Euclidean actions if field theory is also common. What is usually

said if that “in the end you Wick rotate to Lorentz signature”.

Wick rotation is a procedure to change the signature of field theory. It

consists (loosely speaking) in “rotating” the time derivative in the complex

plane t→ it . This changes the signature of space time from a Lorentzian

metric to a Euclidean one

This renders some integrals, which would be oscillatory in the functional

integration, convergent since eit → e−t . In some cases other regularizations

work as well, and in principle they are just equivalent procedure which can

work always, even if the technical difficulties can be very different

Then one Wick rotates back, i.e., undoes an operation. But in the spectral

approach we cannot start unless we have an Euclidean theory. So we are not

going back, we are going in unchartered territory
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Usually a Wick rotation is indicated as the transformation t→ it ,

even if a more correct procedure would be to rotate the vierbein.

Namely for each F , which depends on vierbeins

Wick: F
[
e0
µ, e

j
µ

]
−→ F

[
ie0
µ, e

j
µ

]
, j = 1,2,3.]

The inverse (which is what usually people call Wick rotation) is

Wick∗ : F
[
e0
µ, e

j
µ

]
−→ F

[
−ie0

µ, e
j
µ

]
j = 1,2,3.

For the bosonic part of the spectral action things go relatively without prob-

lems, the prescription is clear and the action is rotated into a new one which

makes the partition function convergent

Wick: SE
bos

[
fields,gE

µν

]
−→ SE

bos

[
fields,−gM

µν

]
≡ −iSM

bos

[
fields,gM

µν

]
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The fermionic sector requires some extra considerations

The group Spin(1,3) is quite different from Spin(4) , γ matrices, genera-

tors, charge conjugation, change. Also the fermionic action changes, since the

quadratic forms have to be invariant under the proper group transformations

ψ̄ γAM e
µ
A

([
∇LC
µ

]M
+ iAµ

)
ψ, ψ̄ψ

ψ̄ ≡ ψ†γ0 and ∇LC
µ the covariant derivative on the spinor bundle with the

Levi-Civita spin-connection, which is different for Lorentzian and Euclidean

The corresponding terms with the required Spin(4) invariance are:

ψ† γAE e
µ
A

[
∇LC
µ

]E
ψ, ψ†ψ
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The charge conjugations are:

CMψ = −iγ2
Mψ
∗ ; CEψ = iγ0

Eγ
2
E = ĈEψ

∗

The Majorana mass term is the same in both cases:

(CEψ)†ψ︸ ︷︷ ︸
Spin(4) inv

= (−iγ0
Eγ

2
Eψ
∗)†ψ = (γ2

Mψ
∗)ψ = − i (CMψ)ψ︸ ︷︷ ︸

Spin(1,3) inv

Also the spacetime grading is the same in the two cases

γ5 = γ0
Eγ

1
Eγ

2
Eγ

3
E = iγ0

Mγ
1
Mγ

2
Mγ

3
M

so that the definition of left and right spinor is the same
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The difference between ψ† which appers in the Euclidean, and

the Lorentzian ψ̄ is the presence of a γ0 which must be inserted
in the Lorentzian case

In NCG the fermionic spectral action is

SF =
1

2
〈Jψ,DAψ〉

Thanks to the extra degrees of freedom, the insertion of γ0 by
hand is not needed for this action, which therefore deals with
slightly different structures.

The fermionic action is build in any case contracting the a con-
jugate spinor with an operator acting on a spinor. Let us look
at the charge conjugation
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The spacetime part of the Hilbert space splits into eigenspaces of chirality,

each of which has two components, for particles and antiparticles

Sp(M) = HL ⊕HR

with our conventions a the antiparticle of a left particle is right, and viceversa

At the same time the internal space has a similar decomposition given by the

internal grading γ

HF = HL ⊕HR ⊕Hc
L ⊕H

c
R

One problem with the quadruplication is the presence of “mirrors”, states

which have different chiralities. They have to be projected out, defining H+

H+ = (HL)L ⊕ (HR)R ⊕ (Hc
L)R ⊕ (Hc

R)L = P+H, P+ ≡
I + Γ

2
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This takes care of half of the extra degrees of freedom. The fermionic action

is then defined as

SF =
1

2
〈Jψ,DAψ〉 ψ ∈ H+

with J = CE ⊗ JF and JF =

 0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0

 ◦ cc.
The action reproduces correctly the Pfaffian i.e. functional integral over

fermions, but this procedure only takes care of half of the extra degrees

of freedom. In processes like scattering, after quatization, it is important to

have the correct Hilbert space of incoming and outgoing particles.

In the bosonic spectral action the operator D is present, not DP+ , which

is not Hermitian and not a square root of the Laplacian.
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Extra degrees of freedom also appear in the Euclidean quantum field theory
constructed by Osterwalder and Schrader. Their construction is rendered in
an axiomatic manner directly introducing the Euclidean quantum Fock space
and operators acting on it,

Despite the mismatch of number of degrees of freedom per ~k the Euclidean fermionic Fock
space, introduced in, does not contain the Lorentzian physical Fock space as a subspace
(in contrast to the bosonic construction). The only connection between Lorentzian and
Euclidean quantum field theories lies in the opportunity to obtain the Lorentzian Green’s
function via analytical continuation of matrix elements.

While Connes’ spectral action approach deals with the Hilbert space of clas-

sical Euclidean fields. On the one hand, for each value ~k of the spatial mo-

mentum Lorentzian fermionic theory exhibits four one-particle states (particle

and antiparticle of two polarizations). On the other hand, in the Osterwalder-

Schrader’s construction there are infinitely many more states: twice more

polarizations, while each one particle state is also labeled by k0 , which varies

continuously, so one deals with an “infiniting” rather than with a doubling.

Despite some superficial similarities, the extra degrees of freedom in the two

approaches are formally unrelated.
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The extra degrees of freedom are taken care by the Wick rota-

tion. It is in fact necessary to first perform the Wick rotation in

order to eliminate the charge conjugation doubling

A naive attempt to remove it from the action with the J would

break the Euclidean Spin(4) symmetry.

Only the combination of Wick rotation (and identification of

states described below) and the projection renders the action

viable for physical applications, and free of the fermion doubling

Let us see the procedure with some more detail
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First we rotate the action as in the bosonic case:

Wick rotation: − SE
F

[
spinors, eAµ

]
−→ iSM doubled

F

[
spinors, eAµ

]

We now have a Lorentz invariant fermionic action invariant under Spin(1,3)

but still exhibiting a doubling. The spinors are in H+, which is not anymore

a Hilbert space with respect to the Spin(1,3) invariant inner product

The remaining doubling consists in presence of spinors from all four subspaces

of H+ :
(
Hc
L

)
R ,
(
Hc
R

)
L , (HL)L , (HR)R

The physical Lagrangian depends on spinors just from the last two
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After the Wick rotation we should perform the following identification



(
ψcL

)
R
∈
(
Hc
L
)
R︸ ︷︷ ︸

∈H+

identified with CM (ψL)L , (ψL)L ∈ (HL)L︸ ︷︷ ︸
∈H+(

ψcR

)
L
∈
(
Hc
R
)
L︸ ︷︷ ︸

∈H+

identified with CM (ψR)R , (ψR)R ∈ (HR)R︸ ︷︷ ︸
∈H+

.

This step leads to the same formula of Barrett, who started directly Lorentzian.

We can then apply the procedure to the spectral action:
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First we restore Lorentz signature in the action

−SE
F → −

∫
d4x

√
−gM

 CE

(
ψcL

)
R

CE

(
ψcR

)
L

†  i /∇M iMD

iM†D i /∇M

 [ (ψL)L
(ψR)R

]

− i
2

∫
d4x

√
−gM

{
[CE (ψR)R]†MM (ψR)R+

[
CE

(
ψcR

)
L

]†
M
†
M

(
ψcR

)
L

}
This action is Lorentz invariant. No modification of the inner product, like

the insertion of γ0 , is needed.

Since CE = iγ0CM we have the manifestly Lorentz invariant action:

SM
F =

∫
d4x

√
−gM

{
(ψL) i /∇M

ψL+ (ψR) i /∇M
ψR

−
[
(ψL)H ψR+ 1

2[CM (ψR)]ω ψR+ c.c.
]}
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We still have extra degrees of freedom since each quantity which carries the

index “c” is independent from the one which does not.

It is remarkable that the path integral is not sensitive to the charge con-

jugation doubling, in particular the Pfaffian is reproduced correctly since∫
[dψ̄][dψ]ei

∫
d4x ψ̄ i/∂M

ψ =
∫

[dξ̄][dψ]ei
∫
d4x ξ̄ i/∂M

ψ.

The correct identification of the Hilbert space is necessary. The Lorentzian

theory has to be quantized, and the quantum Hilbert space of asymptotic

states has to be constructed. Such a space is usually referred in physical

literature as a “Fock space”.

The Hamiltonian coming out of this action is not Hermitian in the Fock space.

This is solved with the identification above. The rest is a straightforward

exercise. In the end we obtain the correct Lorentzian signature action that

you will find in textbooks.

16



What have we learned? I think the most intriguing element is that the Eu-

clidean fermionic action, which uses in a crucial way the real structure of the

spectral triple, and needs the fermionic quadruplication, is naturally rotated

in the Lorentzian, with the elimination of the extra degrees of freedom.

There are various studies which connect spectral triples and Lorentz signa-

tures Verch, Paschke, Sitarz, Eckstein, Franco, Besnard, Bizi, Van den Dungen, . . . . The

considerations I exposed suggest that a possible way to obtain Lorentzian

spectral triple is a rigorous treatment of Wick rotations.
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Let me add a “twist” to the issue!

When I presented the Grand Symmetry I failed to stress that in order to

preserve the commutativity of the algebra with its opposite algebra

[a, b0] = [a, JbJ−1] = 0

one has to introduce a twisted commutator, so to have a twisted spectral

triple

Twisted spectral triple were introduced by Connes and Moscovici, and their

are based on the introduction of a deformation of the commutator

[a, b]ρ = ab− ρ(b)a

where ρ is an automorphism of the algebra.
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The Grand Symmetry requires, in the pregeometric phase, the use of twisted

commutators for the algebra and the potential. In the low energy phase the

automorphism reduces to the identity

One way to implement ρ is to have a unitary operator R so that

ρ(a) = RaR†

One then builds a twisted inner product, defines twisted self-adjointness and
unitarity, and a twisted spectral action

〈Ψ,Φ〉ρ = 〈Ψ, RΦ〉 = 〈R†Ψ,Φ〉.



Such a R implements naturally the split of the Hilbert space into a Krein
space, if we write

R =

(
0 12

12 0

)
.

It would not have escaped to you attention that this is exactly the form of

γ0

In fact the twist needed by the grand symmetry is exactly γ0 , so that

the twisted inner product becomes exactly the insertion of γ0 necessary

to make the Lorentzian inner product. Even the passage between Euclidean

and Lorentzian γ ’s is a twist with γ0 .

Likewise (I will omit the details), the twisted actions turn out to be the
Lorentzian ones!

The picture emerging is a deep connection between the twist, Lorentzian
spectral triples and Wick rotations, although unfortunately for the moment
the evidence is still somewhat aneddotical
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Conclusions

Noncommutative geometry starts with a view of geometry based on spectral
properties, and is geared towards a profound generalization historically opened
by the necessity to describe the quantum world

But then noncommutative grows to become mora a philosophy for which
what is fundamental are not anymore the points, but rather the algebraic
structures that we can build over them.

I tried in the last two lectures to give you the flavour of an application to the
physics of fundamental interactions. What we are doing is to understand the
noncommutative geometry of the standard model. This view is not the “party
line” of particle physicists, but nevertheless not only gives a more general
framework, which may lead to a more profound understanding, but also makes
it conceivable that it may an actual contribution to phenomenology, and
confront itself with experiments in a positive way.
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Details of the Wick rotation

First we rotate the action as in the bosonic case:

Wick rotation: − SE
F

[
spinors, eAµ

]
−→ iSM doubled

F

[
spinors, eAµ

]
We now have a Lorentz invariant fermionic action invariant under Spin(1,3)

but still exhibiting a doubling. The spinors are in H+, which is not anymore
a Hilbert space with respect to the Spin(1,3) invariant inner product

The remaining doubling consists in presence of spinors from all four subspaces

of H+ :
(
Hc
L

)
R ,
(
Hc
R

)
L , (HL)L , (HR)R

The physical Lagrangian depends on spinors just from the last two
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After the Wick rotation we should perform the following identification
(
ψcL
)
R ∈ (Hc

L)R︸ ︷︷ ︸
∈H+

identified with CM (ψL)L , (ψL)L ∈ (HL)L︸ ︷︷ ︸
∈H+(

ψcR
)
L ∈ (Hc

R)L︸ ︷︷ ︸
∈H+

identified with CM (ψR)R , (ψR)R ∈ (HR)R︸ ︷︷ ︸
∈H+

.

This step leads to the same formula of Barrett, who started directly Lorentzian.

We can then apply the procedure to the spectral action:
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First we restore Lorentz signature in the action

−SE
F → −

∫
d4x
√
−gM

[
CE

(
ψcL
)
R

CE

(
ψcR
)
L

]† [
i /∇M

iMD

iM †D i /∇M

] [
(ψL)L
(ψR)R

]
− i

2

∫
d4x
√
−gM

{
[CE (ψR)R]†MM (ψR)R +

[
CE

(
ψcR
)
L

]†
M †M

(
ψcR
)
L

}
This action is Lorentz invariant under. No modification of the inner product,

like the insertion of γ0 , is needed.

Since CE = iγ0CM we have the manifestly Lorentz invariant action:

SM
F =

∫
d4x
√
−gM

{
(ψL) i /∇M

ψL + (ψR) i /∇M
ψR

−
[
(ψL)H ψR + 1

2[CM (ψR)]ω ψR + c.c.
]}
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We still have extra degrees of freedom since each quantity which carries the
index “c” is independent from the one which does not.

It is remarkable that the path integral is not sensitive to the charge con-
jugation doubling, in particular the Pfaffian is reproduced correctly since∫

[dψ̄][dψ]ei
∫
d4x ψ̄ i/∂

M
ψ =

∫
[dξ̄][dψ]ei

∫
d4x ξ̄ i/∂

M
ψ
.

The correct identification of the Hilbert space is necessary. The Lorentzian
theory has to be quantized, and the quantum Hilbert space of asymptotic
states has to be constructed. Such a space is usually referred in physical
literature as a “Fock space”.

The Hamiltonian coming out of this action is not Hermitian in the Fock space.
This is solved with the identification above. The rest is a straightforward
exercise. In the end we obtain the correct Lorentzian signature action that
you will find in textbooks. back
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