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Action and Renormalization

The remarkable fact is that the fluctuations of the Dirac operator introduced

the bosonic fields, gluons which are responsible for the strong (nuclear) force,

the W and Z bosons responsible for the weak force, the photon and another

field, which in view of its coupling to the fermion is responsible for the breaking

of the symmetry and to give mass to the fermions.

This is the Higgs (Englert, Brout, Guralnick, Hagen, Kibble) boson

We should get numbers. In a form which can be confronted with experiment.

And while we cannot aim at agreement with 12 significant digits, at least two

or three...
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We have set the stage.

Ingredients:

• An algebra is a product of a continuous infinite dimensional part and
a discrete finite dimensional noncommutative part. The algebra is the

product C0(M)× (Mat(3,C)⊕ H⊕ C)

• A representation of the algebra on a Hilbert space containing the known
fermions. The representation is aymmetric, we can discuss the details
in the exercise session.

• A generalized Dirac operator which has information on the curved back-
ground of the continuous Riemannian part as well as the masses of the
fermions

• A chirality and a charge conjugation operator

• An action based on the spectrum of the operators, which we expand in
series

Now we should just crank a machine
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j (γ∂ + mλ
u)uλ

j − d̄λ
j (γ∂ + mλ

d)dλ
j + igswAµ

(
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j γ

5uλ
j ) − ig

2
mλ

d

M φ0(d̄λ
j γ

5dλ
j )

Here the notation is as in [46], as follows.

• Gauge bosons: Aµ,W ±
µ , Z0

µ, ga
µ

• Quarks: uκ
j , dκ

j , collective : qσ
j

• Leptons: eλ, νλ

• Higgs fields: H,φ0, φ+, φ−

• Ghosts: Ga,X0,X+,X−, Y ,
• Masses: mλ

d ,mλ
u,mλ

e ,mh,M (the latter is the mass of the W )

• Coupling constants g =
√

4πα (fine structure), gs = strong, αh =
m2

h
4M2

• Tadpole Constant βh

• Cosine and sine of the weak mixing angle cw, sw

• Cabibbo–Kobayashi–Maskawa mixing matrix: Cλκ

• Structure constants of SU(3): fabc

• The Gauge is the Feynman gauge.

Remark 4.5. Notice that, for simplicity, we use for leptons the same convention usually
adopted for quarks, namely to have the up particles in diagonal form (in this case the neu-
trinos) and the mixing matrix for the down particles (here the charged leptons). This is
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We found the complete Lagrangian of the standard model coupled to a back-

ground gravitational field.

So what? We knew it already!

But there is an important aspect, the various constants which appear are all

fixed by the entries of DF , which are the Yukawa couplings of the fermions

and their mixing.

Ex Perform a similar construction for a Grand Unified Theory

It turns out that the parameters of the Higgs are dependent on

these, and are not independent, as in the standard model.

Do we have a prediction of the Higgs?
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The impressive Lagrangian written above is still classical, one has to quantize,

it and implement on it the renormalization programme.

As I said the Lagrangian is written coupling the SM to gravity. I will of course

not quantize the gravitational field (which would give a nonrenormalizable

theory) and choose as backroung Minkowsli space.

Renormalization means that all “constant” quantities in the ac- tion are a

functions of the energy: running coupling constants

The running is given by the β function, solution of an ordinary differential

equation, calculated perturbatively to first (occasionally second, rarely third)

order in ~ by the n -point amplitude (loop expansion)

At this stage we use traditional quantum field theory techniques.
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First think one has to decide is at which energy one write the

big Lagrangian. This will give a boundary condition

It turns out that the fact that the top quark mass is much higher

with respect to the other particles ( ∼ 170 GeV vs. ∼ 4 GeV

for the bottom) the Higgs parameters as well as the flow are

dominated by this value.

One boundary condition can be given by the fact that in the

model obtained cranking the machine the strength of the funda-

mental interaction is equal

Experimentally is known that if there are no other particles ap-

pearing at higher energy the three coupling constant are almost

equal in one point:
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As I said the Dirac operator contains all data relative to the fermions, but

no information on the Higgs mass (actually vev and quartic coupling coeffi-

cient) which can be calculated from the fermion mass parameters (Yukawa

couplings). These in turn are dominated by the top quark coupling.

Hence we have a “prediction” for the Higgs mass.

The prediction is 175.1 + 5.8− 7.2GeV .

This number is wrong.
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As I said the Dirac operator contains all data relative to the fermions, but

no information on the Higgs mass (actually vev and quartic coupling coeffi-

cient) which can be calculated from the fermion mass parameters (Yukawa

couplings). These in turn are dominated by the top quark coupling.

Hence we have a “prediction” for the Higgs mass.

The prediction is 175.1 + 5.8− 7.2GeV .

This number is wrong.

The actual experimental value is 125.09± 32GeV .
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Let me make a little sociological comment. In these lectures, especially this

last one, I have been talking with very little mathematical rigour. This may

disconcert, or even horrify mathematicians. Yet, in physics we have a very

stringent rigour: experimental verification. We let ourselves do anything we

want with a theory, and in the end we judge it by its predictions.

Now it depends how you consider this theory. if you take it as a mature fully

formed theory then the result is wrong. That’s it! Throw away the theory.

If you take it (as I do) as a tool to investigate the standard model starting from

first principles, then it is remarkable that a theory based on pure mathematical

result gets reasonable numbers

Alternatively take the measurement of the Higgs as a reason to understand

in which direction one has to improve on the theory. And hasten to add that

it possible to reconcile it with experiment.
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The prediction depends on the boundary condition, and we were

forced to use one for which the coupling constants of the three

interactions were equal at a scale. This is true only approxi-

mately, but the picture I showed is based on a running which

starts from low energy (where we have data) and extrapolates

to high energy.

But if one changes the field content, then the runnings of all

quantities change

It is known that in some supersymmetric theories the presence of the susy

partners alters the running and could lead to unification.
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Right handed neutrinos

Enter right handed neutrinos. The most recent addition to the particle zoo.

We indirect evidence of their existence from the fact that neutrino oscillate

between different flavours. This is possible only for massive particles.

We do not have a direct calculation of the mass of left handed neutrinos, but

we know that it must be very small . 0.12 eV . The following lightest is the

electron at 511000 eV .

Although origin of the numerical values of all masses in the standard model

is mysterious, the reason for such a low value is doubly so. And it suggests

that the neutrino masses have a different origin from the other masses.

The idea is to use the so called see-saw mechanism, i.e. give a high Majorana

mass to the right handed neutrino, in addition to the usual Dirac mass. Here

by “high” we mean of the order of the unification energy, the scale at which

the standard model would change its order parameter.
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Usually one for particles one considers Dirac masses, which connect spinor

with different chiralities: ψLmψR

But also Majorana masses are possible in the Lagrangian, this connect same

chirality spinors ψRmMψR or ψLm
′
MψL

Therefore in general there would a mass matrix comprising both kind of

masses, with the Majorana masses on the diagonal and the Dirac mass off

diagonal.

In the presence of generations the matrices are not just two by two, but the idea is the same.

The eigenstate of mass are obtained diagonalizing this matrix. The see-saw

mechanism assumes a matrix in which there is a Majorana mass for the right

handed neutrino of the order of the unification scale, and a “normal” smaller

Dirac mass. One of the eigenvalues of this matrix is ∼ mM while the other

is m
m2

M

� m
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Although as we said the constraints given by NCG are quite stringent, it turns

out that the slot corresponding to a Majorana mass matrix for right handed

neutrino is allowed.

This means that now we have another large scale in the model,

and this may change the running of the beta functions, and

cause on one side the unification of the three interactions, and

on the other a different value for the Higgs mass.

A different DF should also cause different one-forms, i.e. differ-

ent bosonic fields.

But an explicit calculation shows that the extra term in DF
commutes with the algebra, and therefore no extra boson, no

different value for the Higgs.
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These considerations however suggested to Chamseddine and

Connes to consider the entry in DF to be an independent field.

This extra field has some of the properties of the Higgs, and it

couples to it, changing the running.

Such a field had already appeared in the literature when it was

realised that a relatively light Higgs at 125 GeV creates a dan-

gerous instability. At some energy, intermediate between the

present scale and the unification scale, the coefficient of the

quartic term in the Higgs potential becomes negative, turning

the Mexican hat into a potential not bounded from below.

15



The problem is that in NCG all bosons (so far are in one-forms

which are obtained by commuting D with elements of the al-

gebra. In this way we obtained W , Z , photons gluons and the

Higgs. Putting this field by hand is at best unpleasant.

Moreover the addition of an extra boson, with its mass and

coupling parameter lowers the predictive power of the model,

with the addition of the extra parameter one can only state that

the model is compatible with data.

We should probably ask more to the model! And go back to its

roots.
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Since the conditions for a spectral triple to describe a manifold

have been cast algebraically, we can see which noncommutative

finite dimensional C∗ algebras satisfy the conditions. And I

remind you that a finite dimensional C∗ is necessarily a sum of

matrices over the reals, complex or quaternions

This is a straightforward exercise you. But you need use all of

the five elements of the triple. The result is that the finite part

of the spectral triple must have a well defined form:

M(H)a ⊕ M(C)2a

for a integer.

The direct sum of matrices of quaternions (which in turn can be represented

as 2× 2 matrices) and matrices of complex number of the same size.
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We need the algebra to be represented on an Hilbert space of

dimension n = 2(2a)2 (up to generation replicas)

The gauge group of this algebra is made of the unitary operators,

and the symmetry will be “broken”, thus reducing the gauge

group.

Hence there is not much freedom in the game, since you need to

see if there is way to obtain the algebra of the standard model
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This algebra acts on a finite Hilbert space of dimension 2(2a)2 .

For a non trivial grading it must be a ≥ 2

AF = M2(H)⊕ M4(C)

Hence an Hilbert space of dimension 2(2 · 2)2 = 32 , the dimen-

sion of HF for one generation.

The grading condition [a,Γ] = 0 reduces the algebra to the left-right algebra

ALR = HL ⊕ HR ⊕ M4(C)

The order one condition reduces further the algebra to Asm, i.e. the algebra

whose unimodular group is U(1)×SU(2)×U(3)
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The group SU(4)× SU(2)× SU(2) has been introduced long ago (Pati-

Salam). Is one of the first example of a Grand Unified Theory. There is

a sort of fourth colour (lepton number) and is left-right symmetric.

This unified theory should break to the standard model. A field called σ

(analog to the Higgs) is necessary. This field appears in D in the position

corresponding to a particular form of the neutrino mass (Majorana). It turns

out that precisely in that spot (and not many others) it is possible to put a

nonzero value!

But cranking of the machine does not produce a contribution to the one

form, the extra term commutes with the algebra. Hence must included it by

hand. Which is unpleasant

Doing again the running of the physical quantitates with this field does change

the Higgs mass, making it compatible with the experimental value
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Physics is therefore telling us that into his framework right handed neutrinos,

and Majorana masses are crucial

Can we avoid adding this field by hand? There are three possible solutions

• Enlarge the Hilbert space introducing new fermions and new interactions.

Stephan

• Consider a Grand Symmetry based on M(H)4 ⊕ M(C)8 Devastato FL Mar-

tinetti

• Violate one of the conditions (order one) Chamseddine, Connes Van Suijlekom

The latter solutions allow the introduction of a new field σ which not only

fixes the mass of the Higges making it compatible with 126 GeV, but also

solves the possible instability of the theory.
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A. Devastato, P. Martinetti and myself proposed a solution: a grand symme-

try.

In NCG the usual grand unified groups, such as SU(5) or SO(10) do not

work. There are very few representations of associative algebras, as opposed

to groups. Finite dimensional algebras only have one nontrivial IRR

Fortunately in the standard model there are only weak doublets and colour

triplets, so it works

Recall that a finite “manifold” is an algebra: Ma(H)⊕M2a(C)

acting on a 2(2a)2 dimensional Hilbert space. So far we had

a = 2, 2(2a)2 = 32× 3 = 96

The numerology comes out correct
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For M4(H)⊕M8(C) one requires a 2(2 · 4)2 = 128 dimensional space. (384

taking generations into account)

This is exactly the dimension of the Hilbert space if we take the fermion

doubling into account. This overcounting had been perceived as a nuisance if

not a problem. One had to project states out, and the unphysical redundancy

was unexplained

It is necessary to look at Hilbert space with different eyes

H = sp(L2(M))⊗HF = L2(M)⊗ HF

where now the dimensions of HF is 384
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It is still possible to represent the gran algebra M4(H)⊕M8(C) satisfying all

of the manifold conditions. This is highly nontrivial if one keeps the same

Hilbert space.

But this time the algebra does not act diagonally on the spinor in-

dices. it mixes them. In addition one has to consider a particular

form of spectral triple: twisted triples, for which the commuta-

tors present in the various conditions are twisted by an isomor-

phism of the algebra.

If I have no time I will not write explicitly the details of the representation (on

particle and anti particles) because they are rather involved. The key point

is that in the process spacetime indices, related to the Euclidean symmetries,

mix with internal, gauge indices.
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We envisage this Grand Symmetry to belong to a pre geometric

phase. At this stage all elements of DF may be negligible, and

the spinor part of the direct operator /∂ will cause the “breaking”

to a phase in which the symmetries of the phase space emerge

In particular, the order one condition for /∂ causes the reduction

of the algebra to M2(H)⊕ M4(C)

And there is an added bonus:
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This grand algebra, and a corresponding D operator, have

“more room” to operate. Although the Hilbert space is the

same, the fact that we abandoned the factorization of the inter-

nal indices, gives us more entries to accommodate the Majorana

masses

Hence we can put a Majorana mass for the neutrino and at the

same time satisfy the order one condition. Then the one form

corresponding to this Dν will give us the by now famous field

σ , which can only appear before the transition to the geometric

spacetime

The natural scale for this mass is to be above a transition which

gives the geometric structure. Therefore it is natural that it may

be at a high scale. How high we can discuss

26



The grand symmetry is no ordinary gauge symmetry, there is

never a SU(8) in the game for example

It represents a phase in which the internal noncommutative ge-

ometry contains also the spin structure, even the Lorentz (Eu-

clidean) structure of space time in a mixed way

The differentiation between the spin structure of spacetime, and

the internal gauge theory comes as a breaking of the symmetry,

triggered by σ , which now appears naturally has having to do

with the geometry of spacetime.

The fermion doubling was not a problem after all. . .

27



Selected References

Apart from the ones of the previous lecture

• The first works on the Higgs as a fluctuation of a noncommutative

geometry are Dubois-Violette, Kerner, Madore J.Math.Phys. 31 (1990)

323 and Connes, Lott Particle Models and Noncommutative Geometry

Nucl.Phys.Proc.Suppl. 18B (1991) 29

• A lot of preparatory work was done by the Marseille group, notably Daniel

Kastler, Bruno Iochum and Thomas Schuker and several young people,

in a series of papers lasting over a decade. No review would be complete

without mentioning their work. One of the latest review by T. Schucker

which still has some actuality is Forces from Connes’ geometry Lect.Notes

Phys. 659 (2005) 285-350.
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• The final cranking is in the paper of Chamseddine, Connes and
Marcolli Gravity and the standard model with neutrino mixing
Adv.Theor.Math.Phys. 11 (2007) no.6, 991

• The fixing of the mass of the Higgs in the “unpleasant” way is in:

A. Chamseddine, Connes Resilience of the Spectral Standard Model JHEP

1209 (2012) 104

• The introduction of the field which could lower the mass (enlarging the

Hilbert space: Stephan New Scalar Fields in Noncommutative Geometry,

Phys. Rev. D 79 (2009) 065013.

• The solution violating the order one condition is in: Chamseddine, Connes,

Van Suijlekom Beyond the Spectral Standard Model: Emergence of Pati-

Salam Unification, JHEP 1311 (2013) 132.



• A phenomenological analysis of Pati-Salam in NCG is in Aydemir, Minic,

Sun, Takeuchi Pati-Salam unification from noncommutative geometry

and the TeV-scale WR boson Int.J.Mod.Phys. A31 (2016) no.01, 1550223 and

Chamseddine, Connes, Van Suijlekom Grand Unification in the Spectral

Pati-Salam Model JHEP 1511 (2015) 011

• The grand symmetry first appeared in: Devastato, FL, Martinetti Grand

Symmetry, Spectral Action, and the Higgs mass JHEP 1401 (2014) 042

• Twisted Spectral Triples were introduced in: Connes, Moscovici Type III

and spectral triples. In: Traces in number theory, geometry and quantum fields,

Aspects of Math. E38, Vieweg, Wiesbaden 2008, pp 5771.



• The twist for the Grand symmetry appeared in: Devastato, Martinetti

Twisted spectral triple for the standard and spontaneous breaking of the

grand symmetry. Math. Phys. Anal. Geo. 20 2 (2017) 43

• A recent view on the twist is: Landi, Martinetti On twisting real spectral

trip les by algebra automorphisms. Lett. Math. Phys. 106 (2016) 1499-1530.



Details of the representation

The Hilbert spacehas 384 finite degrees of freedom, four are

coming from the spinorial part and 96 from the internal part HF .

This figure is the product of the eight particles (neutrino, elec-

tron, up and down quarks in three different coulours), times two

chiralities, with theor respective antiparticles times three gener-

ations. The 384 includes the overcounting due to the fermion

doubling

It is useful to arrange Ψ ∈ H into a nested set of matrices. We

start by expressing Ψ as a rectangular block matrix:

Ψ =

(
P
A

)
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where P and A stand for “particle” and “antiparticle” respectively.

In other words we are splitting H into its particle and antiparticle

subspaces:

H =

(
H
Hc

)

We then express P and A as 4× 4 block matrices:

P =




VR U1
R U2

R U2
R

ER D1
R D2

R D2
R

VL U1
L U2

L U2
L

EL D1
L D2

L D2
L




; A =




VcR EcR VcL VcL
U1c
R D1c

R U1c
L D1c

L
U2c
R D2c

R U2c
L D2c

L
U3c
R D3c

R U3c
L D3c

L




where the subscript 1,2,3 represent colour; the subscripts L and

R represent the chiral grading in the internal space, remember

that the antiparticle (identified by the superscript c) of a left

handed state is right handed and viceversa; V, E,U,D are columns



whose elements the fermions: neutrino, electron, up and down

quark respectively, for the first elements, repeated for the three

generations, i.e.:

V =



νe
νµ
ντ


 ; E =



e
µ
τ


 ; U =



u
c
t


 ; D =



d
s
b




The subscripts L and R refer to the index in the internal space.

Each of the elements of the latter vectors are Dirac fermions,

therefore there should be a further spinorial index, which for the

moment we omit.

To isolate quarks and leptons useful to define the projection



matrix e11 as

e11 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




so that the leptonic and hadronic part of the Hilbert space are
defined as:

Hl =

(
0

e11

)
H+

(
1

0

)
H e11 ; Hq =

(
1

1− e11

)
H+

(
0

1

)
H (1−e11)

A generic endomorphism of HF can be represented by the sum
of left actions of 8× 8 matrices on the left times 4× 4 matrices
on the right, and the matrix multiplication is of course the usual
row by column. An alternative representation, the “opposite”
representation would be obtained multiplying colum by row a



4×4 matrix on the left times a 8×8 matrix on the right. Discuss

the dimensions.

The element a = (c, q,m) ∈ A acts on H from the left as follows

as follows. Define two 4 × 4 block matrices au and al, where l

and u stand for upper and lower, as

au =




c 0
0 c̄

q


 , al =




c

m






The algebra is then represented as an endomorphism as∗

aΨ =

(
auP
alA

)

The charge conjugation operator JF acts exchanging particles

with antiparticles as follows†:

JFΨ =

(
A†

P†

)

The action of the opposite algebra can be represented as the

∗A generic automorphism of H is given by the left action of an 8× 8 matrix,
and the right action of a 4× 4 matrix. for precision we should have written
aΨ14, with an identity matrix on the right. To ease notations we will omit
the identity matrices when no confusion may occur.
†Although JF is an antilinear operator we still use the matrix multiplication
notation.



action:

aoΨ = JF āJFΨ = Ψ ◦ ā

where by ◦ we indicate the action of the opposite algebra which

acts by “colums by row” multiplication and the overbar is com-

plex conjugation.

It is easy to verify that for each pair of elements a,b ∈ AF
aJFbJFΨ = JFbJFaΨ = aΨ ◦ b̄

i.e. the order 0 condition is satisfied. The operator JF enables

the definition of the action of the unimodular (unitary of unit

determinant) elements of the algebra on the Hilbert space and

thus define the gauge group. These elements are defined from

the unitary elements of AF as uJFu†JF . Hence the action of the



unimodular elements of the algebra gives the gauge group, for
g = {λ,W,G} ∈ U(1)⊕ SU(2)⊕ SU(3) we have:

gΨ =




λ3 0
0 λ̄3

W

λ3

λ̄G







P

A




◦




λ̄3

λG†

λ̄3 0
0 λ3

W̄




the action of U(1) on the various particles is according to the
representation eY λ given by the usual hypercharge assignments:

VL, EL UiL,D
i
L VR ER UiR DiR

Y −1 1
3 0 −2 4

3 −2
3



with the antiparticle having the opposite hypercharge of the cor-

responding particles.

A generic Dirac operator which satisfies the order one condition

and commutes with JF , must be the sum of three Hermitean

operators:

DF = DC + JFDCJF + DM

where DC commutes with any element of the opposite algebra

[DC,JFaJF ] = 0, and has zero componets in the directions e15⊗
e11 and e51 ⊗ e11 , while DM commutes with both the algebra

A and its opposite Ao. These conditions limit severely the form

of DC and DM . To find their form we need the explicit form

of (Ao)′, the commutant of the opposite algebra Ao. Explicit

computation shows that an element of it, a′, is given by three



complex numbers f, g, h, a 2 × 2 matrix r, and a 4 × 4 matrix m
and acts on Ψ as

a′Ψ =




t11 t12

f

g12

t21 t22

h13







P

A




m

DC must commute with any matrix of the form above it must

have a definite form. Which happens to have all of the known

Yukawa couplings, plus some extra slots which we will not dis-

cuss.



The 15 and 51 slots are taken care by DM which is

Υe15 ⊗ e11 + Υe51 ⊗ e11

The action of e15⊗e11 and e51⊗e11 singles out the right handed

neutrino states VR in the Hilbert space of states. Since DM com-

mutes with the algebra and its opposite it does not contribute

to the potential one forms. That is, in the bosonic action it will

not give rise to a field.

Let us first consider the operator D0F , it is a 96⊗96 matrix which

acts trivially on the spinor indices and, unlike the representation

of the algebra, is not diagonal in the matrix indices. It contains

the Yukawa couplings of the fermions, which give rise to two

kind of masses, Dirac and Majorana.



Since Dirac and Majorana masses play a slightly different role we
will split D0F into two parts:

D0F = D0D +D0M

Let us consider first the Dirac mass term matrix, which we split
in its action on leptons and quarks

D0D[Ψ] = Dl[Ψ] +Dq[Ψ]

=

(
Y0l

e11

)(
P 0
0 A

)(
e11

Y0l

)
+

(
Y0q

1− e11

)(
P 0
0 A

)(
1− e11

Y0q

)

with the same dimensional blocks as (), the block is turn are
split as

Y0l =




Y†V
Y†E

YE
YV




; Y0q =




Y†U
Y†D

YD
YU






Majorana mass terms instead couples R neutrinos with R neutri-

nos:

D0M [Ψ] =

(
e11

Y0M

)(
P 0
0 A

)(
Y0
†
M

e11

)

and Y0M is the diagonal matrix

Y0M =




YM
0

0
0




The covariant Dirac operator gives the presence of a Higgs field



acting on the doublets

Yl =




0


 Y†V 0

0 Y†E


⊗H

(
YV 0
0 YE

)
⊗H† 0




Yq =




0


 Y†U 0

0 Y†D


⊗H

(
YU 0
0 YD

)
⊗H† 0




It is easy to see by direct calculation from the explicit form of
the element a that instead

[D0M , a] = 0⇒ D0M = DM



and therefore the Majorana mass term does not give rise to an

extra field.

back



Details of the representation of the Grand Algebra

There are several finite dimensional algebras in this game, and I want to look

at their representations

Ultimately we want to ge to the the standard model algebra

Asm = C⊕ H⊕ M3(C),

H are the quaternions, which we represent as 2× 2 matrices

It is possible to have this emerge from the most general algebra which satisfies

the condition of being a noncommutative manifold

AF = Ma(H)⊕ M2a(C) a ∈ N.

30



This algebra acts on a finite Hilbert space of dimension 2(2a)2 .

For a non trivial grading it must be a ≤ 2

AF = M2(H)⊕ M4(C)

Hence an Hilbert space of dimension 2(2 · 2)2 = 32 , the dimen-

sion of HF for one generation.

The grading condition [a,Γ] = 0 reduces the algebra to the left-right algebra

ALR = HL ⊕ HR ⊕ M4(C)

The order one condition reduces further the algebra to Asm, i.e. the algebra

whose unimodular group is U(1)×SU(2)×U(3)

31



Let us look in detail to a vector in the Hilbert space:

ΨCIm
sṡα (x) ∈ H = L2(M)⊗ HF = sp(L2(M))⊗HF

Note the difference between HF , which is 96 dimensional, and

HF which is 384 dimensional. The meaning of the indices is as

follows:

ΨCIm
sṡα (x)

s = r , l
ṡ = 0̇ , 1̇

are the spinor indices. They are not internal indices in

the sense that the algebra AF acts diagonally on it. They take

two values each, and together they make the four indices on an

ordinary Dirac spinor.

32



ΨCIm
sṡα (x)

I = 0, . . .3 indicates a “lepto-colour” index. The zeroth “colour”

actually identifies leptons while I = 1,2,3 are the usual three

colours of QCD.

33



ΨCIm
sṡα (x)

α = 1 . . .4 is the flavour index. It runs over the set uR, dR, uL, dL

when I = 1,2,3 , and νR, eR, νL, eL when I = 0 . It repeats in

the obvious way for the other generations.
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ΨCIm
sṡα (x)

C = 0, 1 indicates whether we are considering “particles” ( C = 0 )

or “antiparticles” ( C = 1 ).

35



ΨCIm
sṡα (x)

m = 1,2,3 is the generation index. The representation of the

algebra of the standard model is diagonal in these indices, the

Dirac operator is not, due to Cabibbo-Kobayashi-Maskawa mix-

ing parameters. For this seminar plays no role, and will ignored.
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We can now give explicitly the algebra representations in term of these indices.

We start from AF = M2(H)⊕ M4(C) , a generic element will depend on 4× 4

complex matrix m , and a 2× 2 matrix of quaternions q , which we may

also see as a 4× 4 with some conditions

The representation in its fullness is

A
tṫCIβ
sṡDJα = δtsδ

ṫ
ṡ

(
δC0δ

I
JQ

β
α + δC1M

I
Jδ
β
α

)

Note the two δ ’s at the beginning which show that the algebra
acts trivially on the spacetime indices, and the fact that the
two matrices act on different indices. This ensures the order
zero condition, namely exchanging particles with antiparticles,
the job done by J , the two representations commute.
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The representations of the other algebra are similar, in the case of the stan-

dard model there is a differentiation with the leptocolour indices.

The order one condition and a ν Majorana mass cause the

reduction to C∞(M)⊗Asm , represented as

a = {m, q, c} with m ∈ C∞(M)⊗ M3(C), q ∈ C∞(M)⊗ H, c ∈ C∞(M)⊗ C

is

a
tṫCIβ
sṡDJα = δtsδ

ṫ
ṡ

(
δC0δ

I
J

(
qβα + cβα

)
+ δC1

(
mI

J + c̃I
J

)
δ
β
α

)

where we use the following 4× 4 complex matrices:

q =

(
02

q

)

αβ

, c =



c

c̄
02



αβ

, c̃ =

(
c

03

)

IJ

, m =

(
0

m

)

IJ

38



The breaking AF to Asm goes with the chirality and first order conditions

I can similarly write down the Dirac operator

D = /∂ ⊗ I96 + γ5 ⊗DF

DF =




08N M MR 08N

M† 08N 08N 08N

M†
R 08N 08N M̄

08N 08N MT 08N


 .

M contains the Dirac-Yukawa couplings. It links left with right particles.

MR =MT
R contains Majorana masses and links righr particles with right

antiparticles. M =

(
Mu 04N

04N Md

)
MR =

(
MR 04N

04N 04N

)
where Mu con-

tainins the masses of the up, charm and top quarks and the neutrinos (Dirac

mass), MR contains the Majorana neutrinos masses and Md the remaining

quarks and electrons, muon and tau masses, including mixings
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I think by now you know the rules. With the algebra and D
one builds the one-form, which are the fluctuations of the Dirac
operator.The bosonic fields are coming from these one-form∑

i ai[D, bi]

Here we run into a problem: the elements of MR are the ones
which should give rise to the field σ as intermediate boson, on
a par with the Higgs, and relate to the breaking of the left-right
symmetry.

Except that this term either commutes with D or violates the
first order condition!

One alternative would is to have a combination of algebra and
Dirac operator violating the first order condition

Or we may look for a bigger algebra...
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Consider the case of Ma(H)⊕ M2a(C) for the case a = 4

In this case we need a 2 · (2 · 4)2 = 128 dimensional space,

which for 3 generations gives a 384 dimensional Hilbert space.

I need a representation of the algebra M4(H)⊕ M8(C) acting on
the spinors I gave earlier, and which can satisfy the stringent
order zero conditions

Consider Q ∈ M4(H) and M ∈ M8(C) with indices

Qṫβ
ṡα =

(
Q0̇β

0̇α
Q1̇β

0̇α

Q0̇β
1̇α

Q1̇β
1̇α

)

ṡṫ

, M tI
sJ =

(
M rI

rJ M lI
rJ

M rI
lJ M lI

lJ

)

st

where, for any ṡ, ṫ ∈
{

0̇, 1̇
}

and s, t ∈ {l, r} , the matrices

Qṫβ
ṡα ∈ M2(H), M tI

sJ ∈ M4(C) have the index structure defined above
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The representation of the element A = (Q,M) ∈ AG is:

AtṫC Iβ
sṡDJα =

(
δC0δ

t
sδ

I
JQ

ṫβ
ṡα + δC1M

tI
sJδ

ṫ
ṡδ
β
α

)

compare with the previous case

A
tṫCIβ
sṡDJα = δtsδ

ṫ
ṡ

(
δC0δ

I
JQ

β
α + δC1M

I
Jδ
β
α

)

The spinor indices and the internal gauge indices are mixed. We are in a

phase in which the Euclidean structure of space time has not yet emerged.

The fermions are not yet fermions

back
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