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I will not dwell too much on the reasons for the need of a non-

commutative geometry, but I may mention the semi-heuristic

argument (Bronstein, Doplicher-Fredenhagen-Roberts) which echoes the so

called Heisenberg microscope.

The argument of this is that for which if you try to measure the position

of a particle with an ideal microscope this implies shining light (or some

other radiation) on it and then collecting the scattered light. But a precise

measurement means short wavelength. But the presence ~ of quantum

mechanics and c of special relativity imply that a short wavelength photon

will have a high momentum, and the unavoidable momentum transfer in the

scattering means that immediately after the measurement the information on

the momentum is uncertain.
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If we decide to ignore momentum, and insert G and general relativity in the

game, and reason at the same heuristic level, we still have restrictions. Now

the problem comes form the fact that concentrating too much energy in too

small a volume creates the horizon of a black hole!

Again we have a limit to the precision of measurement.

Needless to say the Heisember microscope is a highly unsatisfactory way to

do describe the uncertainty principle (and indeed is off by a 4π factor.)

The proper way is to the formalism and interpretation of quantum mechanics

where x and p are noncommuting operators acting on a Hilbert space, a

physical state is given by a vector or a density matrix, and so on.

Unfortunately we cannot play the same game for spacetime, as we do not

have a full fledged theory of quantum gravity!
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Nevertheless the previous considerations suggest that a way to

go is to generalize the usual geometric concepts and build a

noncommutative geometry

Although the natural scale of such a generalized geometry is the Planck

length, a surprising aspect is that there is an interpretation of the standard

model of particle interaction (in a background gravitational field) as a very

simple noncommutative geometry. Spacetime is still “classical”, and the

noncommutativity is given by a matrix algebra. The description has the

possibility to be confronted with experiments and to make predictions
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The plan of the lectures is the following. Not all lecture are of equal length, therefore I may

carry some of them to the following session. And depending on how we go I may cut some

material

In today’s lecture I will introduce noncommutative geometry from the spectral

point of view, not only to set the stage for further developments, but to

indicate the philosophy which will guide the course

For the remaining lectures the geometry will be simpler, an ordinary spacetime

multiplied by finite matrices, but I will apply the spectral point of view to the

standard model of particle physics. In the second lecture I will introduce the

standard model as a noncommutative geometry

In the third lecture I will confront the spectral point of view with the actual

standard model.

In the fourth the lecture (if I get there) I will discuss the issue of Lorentzian

signature
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From Commutative to Noncommutative Geometry

Geometry has been always tied closely to physics. I like to offer a quote by

Galileo Galilei from the Dialogo sui massimi sistemi

È forza confessare che il voler trattare le quistioni naturali senza geometria è

un tentar di fare quello che è impossibile ad esser fatto

We must confess that to treat matters of nature without geometry is to

attempt to do what cannot be done.

But what is Geometry?

To define it I cannot think of a higher authority than Wikipedia

Geometry (from the Ancient Greek: γεωµετρια geo- ”earth”, -metron ”mea-

surement”) is a branch of mathematics concerned with questions of shape,

size, relative position of figures, and the properties of space.
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Several physical theories do not just use geometry as a tool, they are geometry

Think for example of analytic mechanics, which is nothing but the symplectic
geometry of phase space, or general relativity and Riemannian geometry

But the geometric view of mechanics had a crisis with the advent of the
quantum world with the uncertainty principle

All at once the notion of a point in phase space becomes untenable, and the
geometry made of points need to be generalised to describe the quantum
phase space

The algebra of commuting functions on phase space become an algebra quan-
tum noncommuting operators. In both cases the state of a physical system
is a map from the element of the algebra into numbers
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Commutative geometry
Hausdorff topological spaces as commutative algebras

There are two important series of theorems mostly due to Gelfand, Naimark
and Segal which connect C∗ -algebras and Hausdorff topological spaces.

A C∗ -algebra A is an associative, normed algebra over a field (typically the

complex C ), with an involution ∗ which satisfies the following properties:

‖a+ b‖ ≤ ‖a‖+ ‖b‖ , ‖αa‖ = |α| ‖a‖ , ‖ab‖ ≤ ‖a‖ , ‖b‖‖a‖ ≥ 0,

‖a‖ = 0 ⇐⇒ a = 0 , ‖a∗‖ = ‖a‖ , ‖a∗a‖ = ‖a‖2 , ∀ a ∈ A

A C∗ -algebra is complete in the topology given by the norm, otherwise we
talk of a ∗ -algebra.

Examples are Mat(n,C) , i.e. n× n matrices, or the algebra of bounded or

compact operators on a Hilbert space, or the algebra C0(M) of continuous

functions over a Hausdorff spaces M vanishing on the frontier in the non-
compact case, with pointwise multiplication. In the first case involution is
Hermitean conjugacy, in the second complex conjugation of the function.

7



One has to be careful with the norm. Obvious norms like TrA†A, A ∈Mat(n,C)

or
∫
M
dµ|f |2, , f ∈ C0(M) , which come form a Hilbert space structure, do not

satisfy the norm property for a ∗ -algebra

Proper norms in the two cases are

‖A‖2 = max
eigenvalues

A†A

‖f‖2 = sup
x∈M
|f(x)|2

In particular the second case is relevant. Given a Hausdorff space M it is

always possible to define canonically a commutative C∗ -algebra: continuous

complex valued functions. Only if M is compact the algebra will be unital
(will contain the identity).
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A key result is that the inverse is also true:

A commutative C∗ -algebra is the algebra of continuous complex
valued functions on a Hausdorff space

In other words, Hausdorff spaces and C∗ -algebra are in a one-to-one corre-

spondence

The proof is constructive, given a C∗ -algebra it is possible to reconstruct

the points of the Hausdorff space, and their topology

For this we need the notion of state φ , i.e. a linear functional

φ : A → C positive φ(a∗a) ≤ 0 and of norm one

‖φ‖ = sup‖a‖≤1 φ(a) = 1

If the algebra is unital then it must be φ(1) = 1
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The space of states is convex, any linear combination of states of the kind

cos2 λφ1 + sin2 λφ2 is still a state for any value of λ .

Some states cannot be expressed as such convex sum, they form the boundary

of the set and are called pure states.

Ex Find the states (and the pure ones) for the algebra of n× n
matrices.

For a commutative algebra the pure states coincide with the (necessarily

one-dimensional) irreducible representations, as well as the set of maximal

and prime ideals. In the noncommutative case these sets are different.
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Gelfand and Naimark gave a prescription to reconstruct a topo-
logical space in an unique way from a commutative algebra

The topology on the space of pure states is given by defining
the limit. Given a succession of pure states δxn define the limit
to be

lim
n
δxn = δx ⇔ lim

n
δxn(a) = δx(a) , ∀a ∈ A

In other words the states which correspond to the points are the evaluation

maps whereby the complex number associated to a function is simply the

value of the function in the point

With the above topology the starting algebra results automatically the algebra

of continuous functions over the space of states

Similarly it is possible to give a topology on the set of ideals, leading to the same topology

for the commutative case.
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Algebras as operators: the GNS construction

As I said NCG is a spectral point of view. This is a consequence of the

fact that any C∗ -algebra is always representable as bounded operators on

a Hilbert space. The proof is again constructive, and is called the Gelfand-

Naimark-Segal (GNS) construction

Every algebra has an action on itself. Consider the algebra as vector space for

the construction of the Hilbert space. We then need an inner product with

certain properties, and then to complete in the norm given by this product.

Any state φ gives a bilinear map 〈a, b〉 = φ(a∗b) with the properties of the

inner product. Except that there are some elements of the algebra for which

φ(a∗a) = 0 even if a is not the null vector. Those states form a (left) ideal

Nφ and have to quotiented out

Ex Prove that Nφ is an ideal
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Consider now the vector space [a] ∈ A/Nφ . The scalar product

〈[a], [b]〉 = φ(a∗b)

is well defined since it is easy to see that is independents on the representatives

a and b in the equivalence classes

We have this given a scalar product which defines a good norm.

The Hilbert space is defined completing in the scalar product

norm, on which A acts in a natural way as bounded operators.

Ex Perform the GNS construction for Mat(n,C) starting from a pure state.

Ex Given the algebra C0(R) consider the two states δx0(a) = a(x0) and

φ(a) = 1√
π

∫∞
−∞ dx e

−x2

a(x) . Find the Hilbert space in the two cases.
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Noncommutative Spaces. Morita equivalence

Once established the correspondence between Hausdorff spaces and commu-

tative C∗ -algebras we may ask what happens for noncommutative algebras

It is still possible to give topologies on the spaces of irreducible representa-

tions (not anymore necessarily one-dimensional) , pure states and maximal or

primitive ideals, but these do not coincide anymore.

For us a noncomutative space will be, by extension of the concept, a non-

commutative C∗ -algebra, sometimes it will possible to talk of point, possibly

generalized, other times it simply does not make sense.

Think for example of the algebra of quantum operators generated by p̂ and q̂ of quantum

mechanics. This is a deformation of the ordinary algebra of functions on phase space. Pure

states are square integrable functions on R which are in no correspondence with the original

points. Coherent states are the closest to the concept of point, but are in no way “pointlike”.
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Consider instead the case of matrix valued functions on R . The algebra is

noncommutative and obviously there is an underlying space, R itself!

This fact is captured by the concept of Morita Equivalence

We first need the concept of Hilbert Module. This is a generalization of
Hilbert spaces where the field C is replaced by a C∗ -algebra. A right

Hilbert module E over A is a right module equipped with a sesqulinear

form E × E → A linear in the first variable and with

〈η1| η2a〉A = 〈η1| η2〉A a , 〈η1| η2〉∗A = 〈η2| η1〉A ,

〈η| η〉A ≥ 0 , 〈η| η〉A = 0 ⇔ η = 0

∀η1, η2, η ∈ E, a ∈ A

Completion in the norm given ‖η‖2
A = ‖ 〈η| η〉 ‖A is assumed.

A left Hilbert module is defined in an analogous way.

Ex Make AN into a Hilbert module, and discuss its automorphisms in the cases A is

Mat(n,C) or C0(M) .

15



Two C∗ -algebras A and B are said to be Morita equivalent if there exists

a full right Hilbert A -module E which is at the same time a left B -module

in such a way that the structures are compatible

〈η| ξ〉B ζ = η 〈ξ| ζ〉A , ∀ η, ξ, ζ ∈ E

Ex The algebras C,Mat(C, n) and and K , compact operators on a Hilbert

space are all Morita equivalent. Find the respective bimodules

Two Morita equivalent algebras have the same space of repre-
sentations, with the same topology. They describe the same
noncommutative space.

The space of complex valued, or matrix valued functions, since a matrix

algebra has only one representation, are Morita equivalent.

But Morita equivalence is far from being “physical” equivalence.
There is more than topology!
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Beyond topology: metric aspects

Let us now introduce one of the main ingredients for the Connes
vision of noncommutative geometry. It adds to the algebra A
which acts as bounded operators on Hilbert space H .

It is a self-adjoint operator D on H with compact resolvent.
It can be seen as a generalization of the Dirac operator. I will
call it Dirac operator, even of oftentimes it will not look at all
as the operator introduced by Paul Dirac ninety years ago.

Together A, D,H form what is called a spectral triple

The Dirac operator enables to describe, in purely algebraic operatorial terms,

the usual structures of geometry. Since the description is purely algebraic it

can easily be generalized to the noncomutative case, thus enabling a non-

commutative geometry.
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The presence of D enables for example to give a distance, and hence a

metric structure, on the space of states on an algebra

d(φ1, φ2) = sup
‖[D,a]‖≤1

{|φ1(a)− φ2(a)|}

Ex Take A = C(R) and D = i∂x . Prove that the distance among pure

states gives the usual distance among points of the line d(x1, x2) = |x1 − x2|

The original Dirac operator γµ∂µ “knows” a lot about a spin manifold.

The differential structure,the spin structure, but also the metric tensor since

{γµ, γν} = gµν , it is the square root of the laplacian. It is therefore no

surprise that it plays such an important role in pure mathematics.
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The presence of D enables an algebraic definition of one-forms and the cre-

ation of a cohomology via da ∼ [D, a] . A generic one form will be A =
∑

i ai[D, bi]

The construction is delicate, one has to implement d2a = 0 . To achieve this

one has to quotient out some “junk” forms. I defer for details to the books

of Landi or Gracia-Bond̀ıa, Varilly and Figueroa for example.

The dimension can be obtained from the rate of growth of the eigenvalues of

D2 (Weyl). Consider the ratio of number Nω of eigenvalues smaller than a

value ω . Then

lim
ω→∞

Nω

ω
d
2

Does not diverge or vanishes for a single value of d , which defines the

dimension, and is of course the usual Hausdorff dimension for the case of

manifolds and the usual D
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Integrals are substituted by trace, in particular a regularized sum of eigenval-

ues called the Diximier trace

The message I wish to convey is that a Dictionary is being built,

whereby the concepts of differential are translated in a purely

algebraic way

In this way they can be generalized to the cases in which the

algebra is noncommutative

This procedure must work also in the cases which are not defor-

mation of ordinary geometries
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Noncommutive manifolds

Manifolds play a central role in geometry, but how do we translate their

differential structure?

We need requirements which, when applied to the commutative case charac-

terize manifolds, and which can be generalised. To do this we need to add

two more ingredients to the spectral triple, they are both operators on H

Interestingly, both play an important role in quantum field theory

The Chirality Operator Γ with Γ2 = 1 actually exists only in the even case.

It splits H = HL ⊕HR

A “charge conjugation” antiunitary operator J which gives a real structure.

It is connected to the Tomita-Takesaki operator, in case you know what this is
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Connes has shown that the following seven “axioms” characterize manifolds

in the commutative case, and generalize to the noncommutative one

1. Dimension This has been discussed above

2. Regularity For any a ∈ A both a and [D, a] belong to the domain of δk

for any integer k, where δ is the derivation given by δ(T ) = [|D|, T ].

3. Finiteness The space
⋂
k Dom(Dk) is a finitely generated projective left

A module.

4. Reality There exist J with the commutation relation fixed by the
number of dimensions with the property

(a) Commutant [a, Jb∗J−1] = 0, ∀a, b

(b) First order [[D, a], bo = Jb∗J−1] = 0 , ∀a, b

5. Orientation There exists a Hochschild cycle c of degree n which gives
the grading γ , This condition gives an abstract volume form.

6. Poincaré duality A Certain intersection form determined by D and by the
K-theory of A and its opposite is nondegenerate.
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So what has this to do with the
Large Hadron Collider ?
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To be continued. . .
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