
Wick rotation, fermion doubling

and Lorentz Symmetry for the Spectral Action

Fedele Lizzi
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In this seminar I will discuss some issues related to the Euclidean
vs. Lorentzian symmetries, and briefly at the end connect with
Clifford algebra.

The fact that the spectral action is defined in Euclidean space,
while the real world had Lorentzian symmetries is usually delat
with the prescription of Wick rotation, i.e. one rotates the time
direction along the imaginary axis, thus changing the signature.

After showing in detail this procedure, and its nuances for the
fermionic case, I will show that a proper implementation of it
takes care of the proper definition of the Hilbert space of the
theory, fully solving the fermion doubling problem.

At the end I will touch upon the possible physical consequences
for particle physics.
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A Noncommutative Geometry in the spectral approach is defined
by the data given by the (extended) Spectral Triple

• An algebra A which describes the topology of spacetime. In
the commutative case is the algebra of continuous functions

• A Hilbert space H on which the algebra act as operators,
and which also describes the matter fields of the theory.

• A (generalized) Dirac Operator D0 which gives the metric
of the space, and other information about the fermions.

• Two operators Γ (present only in the even case) and J .
For physicists they are chirality and charge conjugation
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The particle standard model is described by a NCG of this kind, an Almost
Commutative Geometry

• The algebra is the product of functions on spacetime times a finite algebra

whose unimodular elements give the gauge group: A = C(M)⊗AF with

AF = C(M)⊗ (C⊕ H⊕Mat3(C))

• Likewise the Hilbert space is the product of spacetime spinors times an
internal space describing all 96 fermionic matter degrees of freedom:

H = Sp(M)⊗HF

• The Dirac operator is the sum of the usual one and a term acting on the
fermions, the latter brings the informations on the masses and mixing:

D0 = (/∂ + /ω)⊗ I + γ5 ⊗DF

• Chirality and charge conjugations are the product of the usual ones times
an internal component: Γ = γ5 ⊗ γf and J = j ⊗ JF
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The coupling with a background is done adding to D0 a potential, i.e. a con-

nection one-form, defined as D = D0 + /A = D0 +
∑

i ai[D0, bi] ,with ai, bi ∈ A

The procedure gives automatically an extra field, the Higgs, as a part of the

connection one-form, obtained by DF rater than /∂

For the bosonic part of the action, we take, the spirit of noncommutative

geometry a regularized trace of the Dirac operator, the spectral action:

SB = Trχ

(
D2
A

Λ2

)

where Λ an energy cutoff scale, and χ is a cutoff function, for example the

characteristic function of the unit interval. In this case the spectral action

becomes the number of eigenvalues of DA smaller than the cutoff Λ
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This approach is growing to the point in which it may start actually to give

numbers which can be confronted with experiments. It points naturally to a

generalization of the standard model based on the algebra Mat2(H)⊕Mat4(C) ,

giving the Pati-Salam gauge group SU(2)L ⊗ SU(2)R ⊗ SU(4)

This algebra makes the almost commutative geometry a Non-
commutative Manifold

The model has had various refinement, until getting to its current version,

which gave a prediction (Chanseddine, Connes, Marcolli) for the mass of the Higgs

of 170 GeV . A mathematical theory based on purely spectral reasoning, and

spectral data, gives a number which is of the right order of magnitude

But the number is wrong. It should have been 125 GeV

The model has to be improved. . .
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Shortly after the measurement of the Higgs mass it was realised

(Chamseddine Connes) that the presence of another boson, called σ

could save the day

This σ has problems of its own, and these can in turn be solved by either con-

sidering (Devastato, FL, Martinetti) a larger “Grand” Algebra Mat4(H)⊕Mat8(C) ,

or by giving up (Chamseddine, Connes, Van Suijlekom) one of the condition for the

almost commutative geometry to be a manifold

In all cases the spectral construction gives in the end an action

with some fields, then one picks up his favorite quantum field

theory book, and makes standard calculations to get numbers

out

But, are we not forgetting something?

6



There are a few issues whose clarification could teach us some-

thing fundamental

A first issue is that the spectral action theory is necessarily writ-

ten in a spacetime which is compact and Euclidean

Compactness is necessary because we cannot really deal with

continuous spectra, and on the other side in field theory the

imposition of an infrared cutoff is common. We can consider

this a technical issue for the moment. At least for the remainder

of this talk I will not worry about it.

The use of Euclidean actions if field theory is also common.

What is usually said if that “in the end you Wick rotate to

Lorentz signature”.
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This is not precisely true. Usually in quantum field theory one
starts with a Lorentzian theory. In order to tame some infinities
one then Wick rotates to Euclidean space. After this rotations
some integrals become convergent, calculations can be made
and, say, Green’s function can be calculated. In some cases
other regularizations work as well, and in principle they are just
equivalent procedure which can work always, even if the technical
difficulties can be very different

Then one Wick rotates back, i.e., undoes an operation. But
in the spectral approach we cannot start unless we have an
Euclidean theory. So we are not going back, we are going in
unchartered territory

In the following I will discuss the transition form Euclidean to
Lorentzian signature in detail, but before that let me mention a,
seemingly unrelated, feature of the model.
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Earlier I define the Hilbert space H = Sp(M)⊗HF , and I said

that HF is a 96 dimensional space

The 96 comes form the fact that we have 8 particles: electron,
neutrino, up and down quarks which come in three colours. Then
there are the respective antiparticles, and the two chiralities, all
of this is 3 generations: 8× 2× 2× 3 = 96 .

The total Hilbert space is overcounted since the degrees of free-
dom of the Dirac spinor already contains the four degrees of
freedom of a particle, its antiparticle, and the two chiralities

This overcounting (FL, Mangano, Miele, Sparano) was originally called
fermion doubling since it gives fermions with the “wrong” chiral-
ity, left on spacetime and righ in the internal space, or viceversa,
but it is actually a quadruplication
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Usually a Wick rotation is indicated as the transformation t→ it ,

even if a more correct procedure would be to rotate the vierbein.

Namely for each F , which depends on vierbeins

Wick: F
[
e0
µ, e

j
µ

]
−→ F

[
ie0
µ, e

j
µ

]
, j = 1,2,3.]

The inverse (which is what usually people call Wick rotation) is

Wick∗ : F
[
e0
µ, e

j
µ

]
−→ F

[
−ie0

µ, e
j
µ

]
j = 1,2,3.

For the bosonic part of the spectral action thing go relatively without prob-

lems, the prescription is clear and the action is rotated into a new one which

makes the partition function convergent

Wick: SE
bos

[
fields,gE

µν

]
−→ SE

bos

[
fields,−gM

µν

]
≡ −iSM

bos

[
fields,gM

µν

]
10



The fermionic sector requires some extra considerations

The group Spin(1,3) is quite different from Spin(4) , γ matrices, genera-

tors, charge conjugation, change. Also the fermionic action changes, since the

quadratic forms have to be invariant under the proper group transformations

ψ̄ γAM e
µ
A

([
∇LC
µ

]M
+ iAµ

)
ψ, ψ̄ψ

ψ̄ ≡ ψ†γ0 and ∇LC
µ the covariant derivative on the spinor bundle with the

Levi-Civita spin-connection, which is different for Lorentzian and Euclidean

The corresponding terms with the required Spin(4) invariance are:

ψ† γAE e
µ
A

[
∇LC
µ

]E
ψ, ψ†ψ
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The charge conjugations are:

CMψ = −iγ2
Mψ
∗ ; CEψ = iγ0

Eγ
2
E = ĈEψ

∗

The Majorana mass term is the same in both cases:

(CEψ)†ψ︸ ︷︷ ︸
Spin(4) inv

= (−iγ0
Eγ

2
Eψ
∗)†ψ = (γ2

Mψ
∗)ψ = − i (CMψ)ψ︸ ︷︷ ︸

Spin(1,3) inv

Also the spacetime grading is the same in the two cases

γ5 = γ0
Eγ

1
Eγ

2
Eγ

3
E = iγ0

Mγ
1
Mγ

2
Mγ

3
M

so that the definition of left and right spinor is the same
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The difference between ψ† which appers in the Euclidean, and

the Lorentzian ψ̄ is the presence of a γ0 which must be inserted
in the Lorentzian case

In NCG the fermionic spectral action is

SF =
1

2
〈Jψ,DAψ〉

Thanks to the extra degrees of freedom, the insertion of γ0 by
hand is not needed for this action, which therefore deals with
slightly different structures.

The fermionic action is build in any case contracting the a con-
jugate spinor with an operator acting on a spinor. Let us look
at the charge conjugation
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The spacetime part of the Hilbert space splits into eigenspaces of chirality,

each of which has two components, for particles and antiparticles

Sp(M) = HL ⊕HR

with our conventions a the antiparticle of a left particle is right, and viceversa

At the same time the internal space has a similar decomposition given by the

internal grading γ

HF = HL ⊕HR ⊕Hc
L ⊕H

c
R

One problem with the quadruplication is the presence of “mirrors”, states

which have different chiralities. They have to be projected out, defining H+

H+ = (HL)L ⊕ (HR)R ⊕ (Hc
L)R ⊕ (Hc

R)L = P+H, P+ ≡
I + Γ

2
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This takes care of half of the extra degrees of freedom. The fermionic action

is then defined as

SF =
1

2
〈Jψ,DAψ〉 ψ ∈ H+

with J = CE ⊗ JF and JF =

 0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0

 ◦ cc.
The action reproduces correctly the Pfaffian i.e. functional integral over

fermions, but this procedure only takes care of half of the extra degrees

of freedom. In processes like scattering, after quatization, it is important to

have the correct Hilbert space of incoming and outgoing particles.

In the bosonic spectral action the operator D is present, not DP+ , which

is not Hermitian and not a square root of the Laplacian.

15



One of the points of this seminar is that the remaining extra

degrees of freedom are taken care by the Wick rotation. It is

in fact necessary to first perform the Wick rotation in order to

eliminate the charge conjugation doubling

A naive attempt to remove it from the action with the J would

break the Euclidean Spin(4) symmetry.

Only the combination of Wick rotation (and identification of

states described below) and the projection renders the action

viable for physical applications, and free of the fermion doubling

Let us see the procedure with some more detail
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First we rotate the action as in the bosonic case:

Wick rotation: − SE
F

[
spinors, eAµ

]
−→ iSM doubled

F

[
spinors, eAµ

]

We now have a Lorentz invariant fermionic action invariant under Spin(1,3)

but still exhibiting a doubling. The spinors are in H+, which is not anymore

a Hilbert space with respect to the Spin(1,3) invariant inner product

The remaining doubling consists in presence of spinors from all four subspaces

of H+ :
(
Hc
L

)
R ,
(
Hc
R

)
L , (HL)L , (HR)R

The physical Lagrangian depends on spinors just from the last two
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After the Wick rotation we should perform the following identification



(
ψcL

)
R
∈
(
Hc
L
)
R︸ ︷︷ ︸

∈H+

identified with CM (ψL)L , (ψL)L ∈ (HL)L︸ ︷︷ ︸
∈H+(

ψcR

)
L
∈
(
Hc
R
)
L︸ ︷︷ ︸

∈H+

identified with CM (ψR)R , (ψR)R ∈ (HR)R︸ ︷︷ ︸
∈H+

.

This step leads to the same formula of Barrett, who started directly Lorentzian.

We can then apply the procedure to the spectral action:
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First we restore Lorentz signature in the action

−SE
F → −

∫
d4x

√
−gM

 CE

(
ψcL

)
R

CE

(
ψcR

)
L

†  i /∇M iMD

iM†D i /∇M

 [ (ψL)L
(ψR)R

]

− i
2

∫
d4x

√
−gM

{
[CE (ψR)R]†MM (ψR)R+

[
CE

(
ψcR

)
L

]†
M
†
M

(
ψcR

)
L

}
This action is Lorentz invariant under. No modification of the inner product,

like the insertion of γ0 , is needed.

Since CE = iγ0CM we have the manifestly Lorentz invariant action:

SM
F =

∫
d4x

√
−gM

{
(ψL) i /∇M

ψL+ (ψR) i /∇M
ψR

−
[
(ψL)H ψR+ 1

2[CM (ψR)]ω ψR+ c.c.
]}
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We still have extra degrees of freedom since each quantity which carries the

index “c” is independent from the one which does not.

It is remarkable that the path integral is not sensitive to the charge con-

jugation doubling, in particular the Pfaffian is reproduced correctly since∫
[dψ̄][dψ]ei

∫
d4x ψ̄ i/∂M

ψ =
∫

[dξ̄][dψ]ei
∫
d4x ξ̄ i/∂M

ψ.

The correct identification of the Hilbert space is necessary. The Lorentzian

theory has to be quantized, and the quantum Hilbert space of asymptotic

states has to be constructed. Such a space is usually referred in physical

literature as a “Fock space”.

The Hamiltonian coming out of this action is not Hermitian in the Fock space.

This is solved with the identification above. The rest is a straightforward

excercise. In the end we obtain the correct Lorentzian signature action that

you will find in textbooks.
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What have we learned? I think the most intriguing element is that the Eu-

clidean fermionic action, which uses in a crucial way the real structure of the

spectral triple, and needs the fermionic quadruplication, is naturally rotated

in the Lorentzian, with the elimination of the extra degrees of freedom.

There are various studies which connect spectral triples and Lorentz signa-

tures Verch, Paschke, Sitarz, Eckstein, Franco, Besnard, Bizi, Van den Dungen, . . . . The

considerations of this seminar suggest that a possible way to obtain Lorentzian

spectral triple is a rigorous treatment of Wick rotations.

I also remind in passing that the full Hilbert space gives rise to a larger,

“grand” symmetry Devastato, FL, Martinetti, which enlarges the Pati-Salam one,

but breaks Lorentz symmetry. The reduction in that case also connects

different spaces.

But there is more to symmetries . . .
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Dabrowski and D’Andrea have given an algebraic characterization of spinors,

which can be extended to the the finite (but possibly noncommutative) di-

mensional case

This work is another step in the construction of a dictionary translating all geometric concepts

in purely algebraic terms, to generalize them to the noncommutative case

1 -forms are built with the help of a Dirac operator elements of the kind

Ω1
D = Span{a, [D, b] : a, b ∈ A , the Higgs field comes from the finite part DF

of the Dirac operator

A,Ω1
D and in the even case γ generate the Clifford algebra C`D(A)
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If the algebra is real and the first order is satisfied( ∃J such that

[JaJ−1, [D, b]] = 0 ), then JAJ−1 ⊆ C`D(A)′ , the commutant of
the Clifford algebras.

SInce in the ordinary case the inclusion is an equality, this prompted
Dabrowski and D’Andrea use an algebraic characterization of
Dirac spinors, extended in an obvious way to NC spaces, and to
study conditons on the spectral action

In particular they gave the definition of a spinor: “Property M”:

Elements of a Hilbert space are spinors iff the above ⊆ is an
equality

Such definition has interesting consequences for physics. Which
I will briefly sketch.
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In order to have the description of the standard model compatible the internal

grading has to change. The new grading treats differently quarks and leptons

It is known that not all Hermitean matrices are viable internal Dirac operators

DF . The number of elements whoch are different from zero are finite, and

are basically the ones of the standard model (with some little extras, but see

the work of Boyle and Farnsworth)

The new grading allows all the terms of the standard model, but property M

requires extra terms, which correspond to new physical particles and interac-

tions

Some of these are “good”, some are “bad”, i.e. make the model inconsistent

The good thing is that the “bad terms” do not appear in the Wick rotated

action! there is no time details, which will appear paper due to appear shortly
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