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This talk has also the duty to introduce the round table which will follow on

“NC Geometry and deformation quantization approaches

From physics point of view deformation quantization started to understand

quantum mechanics, the space being deformed is the pause space. While

it is still largely used to this extent, later, following the work of Doplicher,

Fredenhagen and Roberts, the object to deform has become spacetime

This second point of view has proven very fruitful for physics, especially after

the work of Seiberg and Witten, and there has been a flurry of activity in this

direction. This has produced good physics, and also some good mathematics.

In the course of the round table I will briefly discuss the recent uses of defor-

mation quantization (in a very ample sense) for spacetime, but in this talk I

will specifically present some work I did with my collaborators on quantization

of phase space and space-time. Unlike he previous talk on strict quantization,

I will instead be in the just introduced framework of lenient quantization.
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Physics is largely about scales, namely (usually) dimensionful quantities which

determine how strong is an interaction, how fast is some radiation, how

energetic is an atom. Those constants appear in the fundamental equations

which describe the world

Three of those are considerate fundamental, and they are Planck’s quantum

of action ~ , the speed of light c , and the Gravitational constant G

Combining them we can build scales which “measure” things:

• Length `p =
√

~G
c3 ' 10−35m

• Time tp =
√

~G
c5 ' 10−44sec

• Mass mp =
√

~c
G
' 10−8Kg
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In a Planckian regime of energies Ep =

√
~c5
G ' 1019GeV both

quantum and general relativity effects are relevant.

One should use a full fledged theory of quantum gravity , a theory
which sadly we do not yet have.

We can nevertheless surmise that at high energies/short distances there is a

rich structure, and some theories point towards some sort of “granularity”.

In the following I will first investigate the possibility that Planck’s
constant ~ is a quantity rapidly stochastically varying. Work in

collaboration with Mangano and Porzio

I will then consider a similar scenario for Newton’s constant GN .
Work in collaboration with De Cesare and Sakellariadou.

I will be sketchy and skip the details of the calculations, which are present in the papers.
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A comment:

We not the first to consider the fact that fundamental constants
are varying quanitites

The idea goes back to Dirac and his Large Number Hypothesis
in 1937.

It has been further developed in the following year, and there are
some stringent limits on their variation.

The variations hypothesised by Dirac, and experimentally tested,
are however on a very large (cosmological) time scale.

To my knowledge we are the first to consider these variations to
be stochastic with a very short (Planckian) scale.
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In the case of ~ our starting point can be a general noncom-
mutative spacetime describe by the commutation relations:

[xi, pj] = iHi
j [xi, xj] = iθij [pi, pj] = iCij

With H, θ and C generic, i.e. non constant. Usually however

Hi
j = ~δij is chosen to be constant.

The last two relations break Lorentz invariance, unless they are
themselves randomly varying, oscillating around zero. In this
caase Lorentz invariance is recovered in an effective way as an
average.

It is most natural to immagine che the correlation lenght and
time of a variable concerning quatum space time be of Planckian
nature
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How is space(time) measured?

I will discuss the question in the context of non relativistic quantum mechanics. A treatment

using quantum field theory and/or relativity is more ambitious, but not unreachable

Starting points are the observables. The selfadjoint part of an algebra of

operators on an Hilbert space.

A state of a physical system is a map from the algebra which is positive

and of unit norm. Pure states (which cannot be written as convex sum of

other states) are the vectios of the Hilbert space, the rest of the states are

represented by mixed density matrices

Usually as algebra we take the (bounded) operators functions of x̂ and p̂

In this view configuration space emerges as the selfadjoint part of a commu-

tative subalgebra, in other word the algebra generated by x̂ alone. From

this commutative algebra it is possible to reconstruct the topology of config-

uration space as the set of pure states of this commutative algebra
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Considering all of the variables of space time as a single vector, Y A = {xi, pj} ,

A = 1 . . .2d the commutations relations can be stored into a single antysym-

metric 2d× 2d matrix

Ω =

(
θij Hi

j

−Hi
j Cij

)

It is always possible, at least locally, to put the matrix Ω in canonical form

with a Darboux transformation to obtain:

Ω′ =

 0 H ′ij
−H ′ij 0


This suggest to consider the modified commutation relation

[xi, pj] = H ′ij

Which is tantamount to having a Planck’ Inconstant
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In the following we will concentrate on a simple one dimensional model

[x,p] = i~(1 + ε(t))

with ε rapidly changing with time

ε(t) = 0 ; ε(t)ε(t′) = τ δ(t− t′)

Overline denotes the mean over ε probability distribution. The

fluctuations are uncorrelated for time differences larger than a

typical correlation time τ

9



The time evolution of an operator is dA
dt

= 1
i~[A,H] + ∂A

∂t

The dependence on ε is given by the commutator. The Poisson bracket,

whose quantization gives the commutator, is also fluctuating.

This is coherent with the view that the fluctuations are an effective way to

take into account an underlying structure

We now need to represent x and p as operators reflecting the modified

commutator

xψ(x) = A(t)xψ(x) = A(t)x0ψ(x)

pψ(x) = −i~B(t)
d

dx
ψ(x) = B(t)p0ψ(x)

with A(t)B(t) = 1 + ε(t) , and x0, p0 the canonical pair of standard quantum mechanics.

We treat position and momentum on a par A(t) = B(t) =
√

1 + ε(t) ,
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Such an effective variable ~ will undoubtedly have consequences

at several levels. The effects will depend on the scale τ

In our paper we investigated two possible experimental signa-

tures. Surely there will be many more, and we hope that other

groups will explore other possibilities. We looked at

• Free particles and interferometric experiments.

• Harmonic Oscillators and coherent light
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The Schrödinger equation for the free particle will show a time

dependence via ε(t)

i~
∂

∂t
ψ =

1

2m
(1 + ε(t))p2

0ψ

It is possible to solve it for a plane wave of momentum p0

ψp0(x, t) =
1√
2π

exp

[
i
p0x

~
− i

p2
0

2m~

(
t+

∫ t
0
ε(t′)dt′

)]
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When measuring an observable in this scheme there are two

averaging processes, conceptually distinct.

• Averaging over the time fluctuations of ε : Ā

• The quantum mechanical averaging.The possible results of

a measurement are the eigenvalues of the operator with a

probability given by the state: 〈A〉

In practice, for τ smaller than the experimental time resolution

the two averaging coincide. Repeating the experiment samples

both distribution. Nevertheless they are conceptually different,

and I will keep the two notations
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For a gaussian peaked at p and variance δ2 we have

ψ(x, t) =
∫

dp0√
2π

1

(πδ2)1/4
e
−(p0−p)2

2δ2
+ip0x/~−ip2

0

(
t+
∫ t

0 ε(t)
)
/(2m~)

The mean distance travelled by a particle is the usual 〈x〉ψ(t)− 〈x〉ψ(0) = p
m
t}

While the uncertainty is

(∆x)2
ψ(t)− (∆x)2

ψ(0) =
δ2

2m2
t2 +

p2 + δ2/2

m2
τ t
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The motion is like a Brownian motion with diffusion coefficient

D =
p2 + δ2/2

2m2
τ

For δ � p , one can view D as due to scatterings with mean

free path (p/m)τ .

Scattering over the quantum structure of spacetime

The usual spreading of the wave packet will dominate, but the

effect can be enhanced for massless particles. In this case

(∆x)2
ψ(t)− (∆x)2

ψ(0) = c2 τ t
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It is possible to measure this effect in a double slit experiment

Waves are detected at some fixed distance L from the plate,
the effect is a change δt of travel time with variance

δt2 = τ t = τ L/c

with t = L/c the time mean value

For frequency ω and intensity I at the mid-point on the screen

I ∝
1

4

∣∣∣e−iω(t+δt1) + e−iω(t+δt2)
∣∣∣2 =

1

2
(1 + cos [ω(δt1 − δt2)])

δt1,2 are the uncorrelated time shift along the two paths.In the standard case

the two waves show a constructive interference. Here, averaging over δt1,2

I ∝
1

2

(
1 + e−ω

2τL/c
)
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For large L, t the intensity behaves as the two waves were not

interfering

The relevant parameter here is ω2τL/c ≥ 1 .

A preliminary analysis puts for Virgo, whose sensibility is bound

by the shot noise, a bound

τ < 10−10GeV−1~
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The harmonic oscillator can be treated in a similar way, as a sys-

tem with variable mass M = m/(1 + ε) and frequency Ω = ω(1 + ε)

with MΩ = mω constant.

This can be solved using standard techniques (Dyson series) so

that the time evolution operator can be formally integrated

a(t) = a(0)e−i ωt
∑
k

(−ω2τt)k

2kk!
= a(0)e−i ωte−ω

2τt/2

Apart from standard oscillatory term, evolution is exponentially

damped on time–scales larger than the characteristic time 2(ω2τ)−1

This can be applied to coherent states
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The time evolution of position mean value 〈x〉λ (solid), 〈x2〉λ (long-dashed)

and squared uncertainty ∆x2
λ (short-dashed) for λ = 1 in units of appropri-

ate powers of
√

~/(mω) .
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We choose an unrealistic large value ωτ = 0.05
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This behavior can be translated in the capability of an optical

coherent state to survive in a cavity

The effect of the variable ~ is that the state decoherentizes.

This must be compared with the fact that in any case coherent

states in real cavities do not last forever. The two competing

effects are however different for scales and functional dependence

on time

Present technology, without dedicated experiments, give an or-

der of magnitude for the bound to be

τ < 10−8GeV−1~
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Let me now consider the case in which the inconstant constant

is Newton’s gravitational constant GN

Assume that is rapidly and stochastically oscillating around its

average:

GN(t) = GN(1 + σξ(t))

Newton’s gravitational constant appears in the Einstein equation:

Gab = 8πGN Tab
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Turning GN naively into a dynamical variable, whith Tab covari-

antly conserved, violates the Bianchi identities

0 = ∇aGab = 8π∇a(GNTab)

The solution to the impasse is to split the energy-momentum

tensor into a matter term, which satisfies the usual conservation

law, and a correction term such that Bianchi is satisfied:

Tab = Tmatter
ab + τab

We therefore mimic the effect of a variable GN with the presence

of a fictitious gravitational source.
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In a isotropic and homogeneous cosmological model, we have

Tmatter
ab = (ρ+ p)uaub + pgab

where ua is tangent to the geodesic of a isotropic observer and

the fluid satisfies the equation of state p = wρ and the continuity

equation ρ̇+ 3H(ρ+ p) = 0 .

For the extra term it is natural to assume that (at least in aver-

age) it is some form of “dark energy”

τab = −λgab

For simplicity consider a toy model for which the only variation

is in time.
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The evolution of the time-dependent “cosmological constant” follows from

the Bianchi identities ĠN(ρ+ λ) +GNλ̇ = 0

After some substitutions, and assuming that we are in a matter or radiation

dominated era ( λ(ti)� ρ(ti) ), we get a deformed equation for the evolution

of the universe

H2(t) =
8π

3

(
GN(ti)ρ(ti) +

∫ t
ti
GNρ̇

)

with H the Hubble parameter which describes the expansion of the universe

after the big bang. Note that all dark energy contributions are in the variation

of GN

Differentiating the we get the evolution equation:

Ḣ = −4πGNρ

With the constraints on the initial conditions H2(ti) = 8π
3
GN(ti)ρ(ti)
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In analogy with the previous case we consider:

GN(t) = GN(1 + σξ(t))

〈ξ(t)〉 = 0, ; 〈ξ(t)ξ(t′)〉 = δ(t− t′)

Rewriting the evolution equation in a differential form and as-

suming that ξ(t) has a white noise distribution we get

dH = −4πGNρ(dt+ σdWt)

where Wt is a Wiener process. Loosely speaking the white noise

is the derivative of the Wiener process
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The Wiener process Wt has the following properties:

• Wti = 0 with probability 1 ;

• The increments Wtk+1 −Wtk are statistically independent

Gaussian variables with mean o and variance tk+1 − tk = h .

It plays the role of a stochastic driving term

We have investigated numerically the solutions for such a model

with parameters 0 ≤ σ ≤ 1 , 10−6 ≤ h ≤ 10−2 , in units such that

GN = 1 , for different choices of the initial condition ρ(ti) .
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Qualitatively the behaviour of the solutions is the same
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t
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The parameters are σ = 0.1 , ρ0 = 10 , h = 10−4 , The horizontal asymptote of H(t)

to a late era of accelerated expansion, when the Universe is dominated by a “cosmological

constant”. The qualitative behaviour of the solutions is a general feature, which does not

depend on the particular choice of parameters.
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As t→∞ , ρ is standard , while H attains a nonvanishing positive limit.

The value of the asymptotic limit does not vary much with the random

sequence, and is not particularly sensitive to the parameters.

This is a general feature of the model that does not depend on the particular

values chosen for ρ0 or the noise strength σ . For σ = 0 one recovers

the standard cosmology in the matter-dominated era, namely ρ ∝ 1/t2 and

H ∝ 1/t .

We did not put “numbers” in the model, as it is too rough at

present, but what we find important is the fact that stochastic

variations can stabilize a cosmological constant to a nonzero

value
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Conclusions

I think that the possibility to have some generic “model inde-

pendent” consequences of quantum space time investigated is

an important activity that our community should pursue.

On one side it helps keep our feet on the ground, and on the

other side it may stimulate some also some very interesting math-

ematical structures. For example what is mathematically a space

with microspoc random fluctuations in the metric?

And, who knows, it may also have something to do with the real

world!
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