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I think we would all agree for the need for fundamental new
physics at very high energy

If we want to describe the big bang we will need some sort of
quantum gravity, of which we have several flavours presently on
the market

The paradigm I will follow for this talk is that at very high scale
there is a new form of geometry, and to describe it I will use the
tools of Noncommutative Geometry

Please note that here by noncommutative I do not mean a space in which the

coordinates do not commute like [xµ, xν] = iθµν . I mean the algebraic tools

given by spectral geometry

I will also try to learn what we can learn “looking from below”
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I will use the knowledge form field theory at energies below the

(yet to be defined) transition scale at which quantum geometry

appears , to infer some knowledge of quantum spacetime

We are having new data from “high” energy experiments, mainly

LHC, so this is a good moment to explore the consequences of

field theory.

The way one can learn what happens beyond the scale of an experiment is

to use the renormalization flow of the theory
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We know that the coupling constants, i.e. the strength of the interaction,

change with energy.
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This picture is valid in the absence of new physics, i.e. new

particles and new interactions which would alter the equations

which govern the running

The three interaction strength start from rather different values

but come together almost at a single unification point

But then the nonabelian interactionsprocced towards asymptotic

freedom, while the abelian one climbs towards a Landau pole at

incredibly high energies 1053 GeV

The lack of a unification point was one of the reasons for the falling out of fashion of GUT’s.

Some supersymmetric theories have unification point
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We all believe that this running will be stopped by “something”

at 1019 GeV

This unknown something we call quantum gravity

As I said I take the point of view that there is a fundamental

change of the degrees of freedom of spacetime at, or before the

Planck scale, and that the tools to describe this are the one of

Noncomutative Spectral Geometry

Following this paradigm, for me the topological nature of space-

time is in the spectrum of the algebra of functions on spacetime

(or its generalization)
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The metric and geometric properties are encoded in the (gen-

eralized) Dirac operator D which fixes the background around

which expand the action

The eigenvalues of the Dirac operator on a curved spacetime

are diffeomorphism-invariant functions of the geometry. They

form an infinite set of observables for general relativity.
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The interaction among fields is described by the Chamseddine-
Connes Spectral Action

S = Trχ

(
D2
A

Λ2

)

χ is a cutoff function, which we may take to be a decreas-
ing exponential or the characteristic function of the interval:

χ(x) =

{
1 x ≤ 1
0 x > 1

DA = D +A is a fluctuation of the Dirac operator, A a connec-

tion one-form built from D as A =
∑
i ai[D, bi] with a, b elements

of the algebra, the fluctuations are ultimately the variables, the
fields of the action

Λ is a cutoff scale
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The spectral action can be expanded in powers of Λ−1 using standard heat

kernel techniques

In this framework it is possible to describe the action of the standard model

One has to choose as D operator the tensor product of the usual Dirac

operator on a curved background /∇ times a matrix containing the fermionic

parameters of the standard model (Yukawa couplings and mixings), acting on

the Hilbert space of fermions

In this way one “saves” one parameter, and can predict the mass of the Higgs.

The original prediction was 170 GeV , which is not a bad result considering

that the theory is basically based on pure mathematical requirements

When it was found at 125 GeV it was realized that the model was refined (right handed

neutrinos play a central role) to make it compatible with present experiments. (Stephan,

Devastato Martinetti, FL, Chamseddine, Connes, Van Suijlekom But this is yesterday

Perimeter’s seminar...

8



Technically the bosonic spectral action is a sum of residues and can be ex-
panded in a power series in terms of Λ−1 as

SB =
∑
n

fn an(D2
A/Λ2)

where the fn are the momenta of χ

f0 =

∫ ∞
0

dxxχ(x)

f2 =

∫ ∞
0

dxχ(x)

f2n+4 = (−1)n∂nxχ(x)

∣∣∣∣
x=0

n ≥ 0

the an are the Seeley-de Witt coefficients which vanish for n odd. For D2
A of

the form

D2 = −(gµν∂µ∂νI + αµ∂µ + β)
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Defining (in term of a generalized spin connection containing also the gauge
fields)

ωµ =
1

2
gµν
(
αν + gσρΓν

σρI
)

Ωµν = ∂µων − ∂νωµ + [ωµ, ων]
E = β − gµν

(
∂µων + ωµων − Γρ

µνωρ
)

then

a0 =
Λ4

16π2

∫
dx4√g tr IF

a2 =
Λ2

16π2

∫
dx4√g tr

(
−
R

6
+ E

)
a4 =

1

16π2

1

360

∫
dx4√g tr (−12∇µ∇µR+ 5R2 − 2RµνR

µν

+2RµνσρR
µνσρ − 60RE + 180E2 + 60∇µ∇µE + 30ΩµνΩ

µν)

tr is the trace over the inner indices of the finite algebra AF and Ω and
E contain the gauge degrees of freedom including the gauge stress energy
tensors and the Higgs, which is given by the inner fluctuations of D
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Let me dwell on the role of Λ . The spectral action uses it as a

regulator. Without it, the trace diverges.

This points to a geometry in which the Dirac operator is actually a truncated

operator, i.e. the Dirac operator has a spectrum of increasing eigenvalues

which “saturates” at Λ

Consider the eigenvectors |n〉 of D in increasing order of the

respective eigenvalue λn .

Call N the number of eigenvalues smaller then Λ , i.e. λn < Λ

for n < N , zero otherwise.
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Truncation of the spectrum can be made by the projection op-

erator

PΛ =
∑
n≤N

|n〉 〈n|

Defining

DΛ = DPΛ + (1− PΛ) Λ, PΛ = Θ(Λ2 −D2)

We are effectively saturating the operator at a scale Λ
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Given a space with a Dirac operator one can define a distance

(Connes) between states of the algebra of functions, in particular

points are (pure) states and the distance is:

d(x, y) = sup
‖[D,f ]‖≤1

|f(x)− f(y)|

It is possible possible to prove D’Andrea, FL, Martinetti that using DΛ

the distance among points is infinite

In general for a bounded Dirac operator of norm Λ then d(, x, y) > Λ−1 , and

to find states at finite distance one has to consider “extended” points, such

as coherent spates
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The role of a truncated Dirac operator, or in general wave oper-

ator, has been introduced in field theory even before the sacral

action. It goes under the name of Finite Mode Regularization,

Andrianov, Bonora, Fujikawa

Consider the generic fermionic action:

Z =
∫

[dψ̄][dψ]e−〈ψ|D|ψ〉
formally

= detD

The equality is formal because the expression is divergent, and

has to be regularized, for example considering DΛ
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One can study the renormalization flow, and note that the mea-
sure is not invariant under scale transformation, giving rise to a
potential anomaly Andrianov, Kurkov, FL

The induced term by the flow, which takes care of the anomaly,
turn out to be exactly the spectral action

The hypothesis is that Λ has a physical meaning, it is a scale
indicating a phase transition, and we can try to infer some prop-
erties of the phase above Λ studying the high energy limit of
the action with the cutoff.

At high momentum Green’s function, the inverse of DΛ , effec-
tively is the identity in momentum space

I will now see this in greater detail considering the bosonic sector
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Usually probes are bosons, hence let me consider the expansion of

the spectral action in the high momentum limit Kurkov, FL, Vassilevich

This has been made by Barvinsky and Vilkovisky who were able to

sum all derivatives (for a decreasing exponential cutoff function):

Tr exp
(
−D

2

Λ2

)
' Λ4

(4π)2

∫
d4x
√
g tr

[
1 + Λ−2P+

Λ−4
(
Rµνf1

(
−∇

2

Λ2

)
Rµν +Rf2

(
−∇

2

Λ2

)
R+

Pf3

(
−∇

2

Λ2

)
R+ Pf4

(
−∇

2

Λ2

)
P + Ωµνf5

(
−∇

2

Λ2

)
Ωµν

)]
+O(R3,Ω3, E3)

where P = E + 1
6R and f1, . . . , f5 are known functions, high

momenta asymptotic of form factor:

16



f1...f5 read:

f1(ξ) '
1

6
ξ−1 − ξ−2 +O

(
ξ−3

)
f2(ξ) ' −

1

18
ξ−1 +

2

9
ξ−2 +O

(
ξ−3

)
f3(ξ) ' −

1

3
ξ−1 +

4

3
ξ−2 +O

(
ξ−3

)
f4(ξ) ' ξ−1 + 2 ξ−2 +O

(
ξ−3

)
f5(ξ) '

1

2
ξ−1 − ξ−2 +O

(
ξ−3

)
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Let me consider a Dirac operator containing just the relevant

aspects, i.e. a bosonic fields and the fluctuations of the metric.

/D = iγµ∇µ + γ5φ = iγµ(∂µ + ωµ + iAµ) + γ5φ

with ωµ the Levi-Civita connection and gµν = δµν + hµν

It is now possible to perform the B-V expansion to get the ex-

pression for the high energy spectral action

SB '
Λ4

(4π)2

∫
d4x

[
−3

2hµνhµν + 8φ
1

−∂2
φ+ 8Fµν

1

(−∂2)2
Fµν

]
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In order to understand the meaning of this action let me remind

how we get propagation of waves and correlation of points in

usual QFT with action

S[J, ϕ] =
∫
d4x

[
ϕ(x)

(
∂2 +m2

)
ϕ(x)− J(x)ϕ(x)

]

To this correspond the equation of motion(
∂2 +m2

)
ϕ(y) = J(y)

And the Green’s function G(x− y) which “propagates” the source:

ϕJ(x) =
∫
d4yJ(y)G(x− y)

19



In momentum representation we have

ϕ(x) = 1
(2π)2

∫
d4k eikx ϕ̂(k)

J(x) = 1
(2π)2

∫
d4k eikx Ĵ(k)

G(x− y) = 1
(2π)2

∫
d4k eik(x−y) Ĝ(k)

And the propagator is

G(k) =
1(

k2 +m2
)

The field at a point depends on the value of field in nearby points,

and the points “talk” to each other exchanging virtual particles
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In the general case of a generic boson ϕ , the Higgs, an inter-

mediate vector boson or the graviton

S[J, φ] =
∫
d4x

(
1

2
ϕ(x)F (∂2)ϕ(x)− J(x)ϕ(x)

)
,

In this case the equation of motion is F (∂2)φ(x) = J(x) giving

G =
1

F (∂2)
, G(k) =

1

F (−k2)

and ϕJ(x) =
∫
d4yJ(y)G(x− y) =

1

(2π)4

∫
d4keikxJ(k)

1

F (−k2)
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The cutoff is telling us that

ϕJ(x) =
∫
d4yJ(y)G(x− y) =

1

(2π)4

∫
d4keikxJ(k)

1

F (−k2)

The short distance behaviour is given by the limit k →∞

Consider J(k) 6= 0 for |k2| ∈ [K2,K2 + δk2] , with K2 very large.

ϕJ(x) −−−−→
K→∞


1

(2π)4

∫
dkeikxJ(k)k2 = (−∂2)J(x) for scalars and vectors

1
(2π)4

∫
dkeikxJ(k) = J(x) for gravitons
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This corresponds to a limit of the Green’s function in position
space

G(x− y) ∝
{

(−∂2)δ (x− y) for scalars and vectors
δ (x− y) for gravitons

The correlation vanishes for noncoinciding points, heuristically,
nearby points “do not talk to each other”.

This is a limiting behaviour, I think one has to take it as a general
indication that the presence of a physical cutoff scale in momenta
leads to a “non geometric phase” in which the concept of point
ceases to have meaning, possibly described by a noncommutative
geometry

Note that throughout this discussion I have done nothing to spacetime, I have

only imposed the cutoff and used standard techniques and interpretations
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Conclusions

It is very difficult to explain to a deep water fish the concept of
air

Still he will know that as he goes up the pressure will decrease

And he can also infer some properties of a different states of
matter by looking at bubbles which are creates near some “high
energy” volcanic vents or when “above” there are storms

What I presented here is hopefully just an element of a larger
picture which should use gravity in a fundamental way

I am convinced that what has to change at high scales is the
very geometry of spacetime, and this work is but an indication
that the direction is the loss of correlation among the points
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