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I will present a personal perspective of Connes noncommutative geometry

construction of the standard model

It will be a physicist’s overview , and I will be sketchy in the precise definition of the math-

ematical objects, and of the calculations of physical quantities. Thus treating equally bad

both discipline, not to show preferences.

Calculations are often quite difficult and involved, and use mathematically

ill defined quantities. Their value is in the fact that this kind of calculation

often gives spectacularly accurate predictions which are verified with accuracy

often of ten or more significant digits.

Any insertion of particle phenomenology into a larger framework immediately

involves ramifications, and this may clash against experiments. Sometimes

the models may fall immediately, other times they require the construction of

whole laboratories to be killed, as in the case of the minimal SU(5) grand

unified theory. Labs were built to look for proton decay, which was not found.

Fortunately the same labs found the mass of the neutrino.
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Everything so far (and most of what I say later) can be found in

the work of Connes, Lott, Chamseddine, Marcolli

There are some precursors for the role of the Higgs as coming

from some sort of NCG in the work of Neeman, Madore, Kerner,

Dubois-Violette.

A lot of work in this model has been dome by the Marseille group:

Kastler, Iochum, Schucker, Krajewski, Martinetti, Stephan, and

of course many more people that I have no time to mention

My own knowledge comes, apart from “reading the classics”,

also from collaborations with Andrianov, Devastato, Figueroa,

Gracia-Bondia, Kurkov, Mangano, Miele, Sparano, Varilly
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You know the starting point of noncommutative geometry is the

spectral triple

• A C∗ -algebra A which describes the topology of spacetime.

• A Hilbert space H on which the algebra act as operators.

This is always possible, and the representation need not be,

and will in general not be, reducible.

• A (generalized) Dirac Operator D0 , self-adjoint and with

compact resolvent. It contains the metric and differentiable

properties.
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There are two more ingredients to the “triple”:

• The chirality operator γ , with γ2 = I . This gives a Z2

grading and splits the H = HL ⊕HR

• An antiunitary operator J , which gives the real structure

to the noncommutative space. You may call it the Tomita-

Takesaki operator, or charge conjugation.
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In the case in which A is commutative this describes an ordinary

topological space. And over the years a dictionary has been built

to translate the usual geometrical concepts using these algebraic

data.

For example bundles are projective modules, forms are built with

the commutators between D0 and A and are represented as

operators on H , the distance between points (pure states) can

be built using the again the Dirac operator, etc.

The algebraic concepts are more robust than those based on

“pointwise” geometry and they survive when the algebra is non-

commutative, enabling us to do noncommutative geometry
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In the commutative case it is possible to characterize a manifold

with properties of the elements of the triple (all five of them)

There is a list of conditions and a theorem (Connes) which proves

this.

Since the conditions are all purely algebraic there remain valid in

the noncommutative case, defining a noncommutative manifold
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In case you want to see them:

1. Dimension There is a nonnegative integer n such that the operator the
Diximier trace of |D0|−1n is finite.

2. Regularity For any a ∈ A both a and [D0, a] belong to the domain of δk

for any integer k, where δ is the derivation given by δ(T ) = [|D|, T ].

3. Finiteness The space
⋂
k Dom(Dk) is a finitely generated projective left

A module.

4. Reality There exist J with the commutation relation fixed by the number
of dimensions with the property

(a) Commutant [a, Jb∗J−1] = 0, ∀a, b
(b) First order [[D, a], bo = Jb∗J−1] = 0 , ∀a, b

5. Orientation There exists a Hochschild cycle c of degree n which gives
the grading γ , This condition gives an abstract volume form.

6. Poincaré duality A Certain intersection form detemrined by D0 and by
the K-theory of A and its opposite is nondegenrate.
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So what has this to do with the
Large Hadron Collider ?
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A particularly simple form of noncommutative geometry describes
the standard model of particle interaction, the model investi-
gated at CERN

The noncommutative geometry is particularly simple because it is the product

of an infinite dimensional commutative algebra times a noncommutative finite

dimensional one

Hence this algebra, being Morita equivalent (i.e. having the same represen-

tations) of the commutative one describes a mild generalization of the space

The infinite dimensional part is the one relative to the four dimensional space-

time

It is worth mentioning that everything works only if this spacetime is compact

and Euclidean, which is not the case in the “real” world. But in this case we

are in good company, often in physics field theories are built on these “bad”

spaces
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We start from the algebra, a tensor product A = C(R4)⊗AF , with the finite

AF = Mat(C)3 ⊕ H⊕ C

The unitaries of the algebra correspond to the symmetries of the

standard model: SU(3)⊕ SU(2)⊕ U(1)

A unimodularity condition takes care of the extra U(1)

This algebra must be represented as operators on a Hilbert space, which also

has a continuos infinte dimesional part (spinors on spacetime) times a finite

dimensional one: H = sp(R)⊗HF . The grading given by γ splits it into a

left and right subspace: HL ⊕HR

The J operator basically exchange the two chiralities and conjugates, thus

effectively making the algebra act form the right.
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For HF we take the zoo of known fermions:

• Quarks, which come in three colours, i.e. transform under the funda-

mental representation of colour SU(3)

• Leptons, which are singlets (trivial representation) under SU(3)

All fermions come in a left and a right “chirality”, belonging to HL,R ,

they transform respectively under the fundamental or trivial representation

of SU(2)

The representations under U(1) are different, there are different hyper-

charges, but their value is arranged in a such a way to “miraculously” cancel
potentially dangerous anomalies which could occur in the gauge field theory.

An then you take the whole package and replicate it in three identical versions
(generations), differing only for the mass of the particles.

In total there are 96 degrees of freedom, including right handed neutrinos, a
relatively recent acquisition in the zoo.
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Now one has to take this complicated Hilbert space, and try

to find a representation of AF in such a way that the fermions

transform properly under the relevant groups, and the conditions

involving A, γ and J are satisfied

Then one has to define a significant D0 which will satisfy the re-

maining conditions, and which will have physical relevance (more

later).

The good news is that this is possible
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Moreover it turns out that the stringent conditions basically con-

strain the algebra, and hence the symmetries of the standard

model, to be the one above

The use of C∗ -algebras, instead of groups, severely restricts the

representations. Very few gauge theories can be described by a

noncommutative manifolds

Fortunately the standard model can.
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I still have to tell you what D0 operator is. It will carry the

metric information on the continuous part as well as the internal

part.

For this almost commutative geometry it will be again split into

a continuous and a finite part

D0 = γµ(∂µ + ωµ)⊗ I + γ5 ⊗DF

ωµ the spin connection. The presence of γ5 , the chirality operator for the continuous

manifold is for technical reasons.

All of the properties of the internal part are encoded in DF ,

which is a 96× 96 matrix.
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The Dirac operator appears in the fermionic part of the action,

which describes the motion of fermions as

〈Ψ|D0 |Ψ〉

The part of D0 containing the spin connection, i.e. the curva-

ture of spacetime gives the coupling with the gravitational field

The finite part must provide the couplings between the left and

right components of the particles, the mass terms, for the elec-

tron

〈eR|me |eL〉
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In D0 we have allowed for a non trivial connection in the man-
ifold, but with can allow for a nontrivial connection also in the
inner, gauge sector

D = D0 +A+ JAJ

where A is a connection one form, which in this context is an
operator of the form

∑
i ai[D0, bi] , with ai, bi ∈ A

We can then write the fermionic action
SF = 〈ψ|D |ψ〉

I will not write the explicit form of the Dirac operator, but I want
to stress that it is already a nontrivial feat to be able to write
the complicated form of the standard model action is such a way

This action represents the classical motion of fermionic field in
a fixed background given by the nontrivial connection
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This is already a nontrivial feat, it is remarkable that the standard

model can be cast in this framework, but not all gauge theories

can

Still, from a physicist’s point of view, this has nothing to do with

LHC, we have to quantize the theory

And quantization of infinite dimensional things is never an easy

task
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We start from the partition function, which is the starting point

for the path integral quantization

Z(D) =
∫

[dΨ][dΨ̄]e−SF

This is an integral over (fermionic) Grassman variables, and it

looks formally like a determinant, but to write it we need a

normalization scale, with the dimensions of an energy

I use units of measurement given by the fundamental constants ~, c, G which

I set to be the of magnitude 1
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We need a scale to regularize the theory. The expression of
the partition function can be formally written as a determinant,
introducing a normalization dimensional constant µ :

Z(D,µ) =
∫

[dψ][dψ̄]e−SF = det

(
D

µ

)

The determinant is still infinite, since the system is infinite di-
mensional.

Therefore we need a procedure which first will regularize the
theory. Since the problem is in the the fact that the eigenvalues
of D grow we need to stop them growing. This means that
we have to put a cutoff on them, which means a cutoff on the
energies

then we will have to decide what to do with this cutoff
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The regularization can be done in several ways. In the spirit of noncom-

mutative geometry the most natural one is a truncation of the spectrum of

the Dirac operator. This was considered long ago by Andrianov, Bonora,

Fujikawa, Novozhilov, Vassilevich

The cutoff is enforced considering only the first N eigenvalues of D

Consider the projector PN =
∑N

n=0 |λn〉 〈λn| with λn and |λn〉 the eigenvalues

and eigenvectors of D

N is a function of the cutoff defined as N = maxn such that λn ≤ Λ

We effectively use the N th eigenvalue as cutoff

The choice of a sharp cutoff could be changed in favour of a smooth cutoff function χ

which weights the eigenvalues less and less as they grow
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Define the regularized partition function

Z(D,µ) =
∏N
n=1

λn
µ = det

(
1l− PN + PN

D
µPN

)

All physical quantities which one can calculate, like masses, or couplings

(strength of the interaction) will be function of these normalizations and

cutoff, which have no physical meaning

This is solved by the renormalization group programme. In a nutshell this

governs the change of physical constants under a change of the energy scale

of normalization

This means that their derivatives of certain functions under a change of the

scale vanishes

This implies that masses, (and couplings) will not have a fixed values, but

will run with energy. All predictions of a quantum field theory are quantities

which are valid at a certain energy.
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Under the change µ→ γµ the partition function changes

Z(D,µ)→ Z(D,µ)e− log γ trPN

On the other side

trPN = N = trχ
(
D

Λ

)
= SB(Λ, D)

for the choice of χ the characteristic function on the interval, a consequence of our sharp

cutoff on the eigenvalues.

We found the spectral action.

This has been introduced by Chamseddine and Connes in 1996,

as a starting point. Here we see that it actually emerges naturally

form the NCG spectral point of view.
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The spectral action gives dynamics to all background fields, the

the gauge bosons, which are present if the internal part of the

connection, and couple them with gravity, present in the Levi-

Civita connection.

The calculations for the spectral action can be done with heath

kernel techniques. After all it is just cranking a machine...

But the cranking depends on the machine
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36 CHAMSEDDINE, CONNES, AND MARCOLLI

LSM = − 1
2∂νga

µ∂νga
µ − gsf

abc∂µga
νgb

µgc
ν − 1

4g2
sfabcfadegb

µgc
νgd

µge
ν − ∂νW+

µ ∂νW−
µ − M2W+

µ W−
µ −

1
2∂νZ0

µ∂νZ0
µ − 1

2c2
w

M2Z0
µZ0

µ − 1
2∂µAν∂µAν − igcw(∂νZ0

µ(W+
µ W−

ν − W+
ν W−

µ ) − Z0
ν (W+

µ ∂νW−
µ −

W−
µ ∂νW+

µ ) + Z0
µ(W+

ν ∂νW−
µ − W−

ν ∂νW+
µ )) − igsw(∂νAµ(W+

µ W−
ν − W+

ν W−
µ ) − Aν(W+

µ ∂νW−
µ −

W−
µ ∂νW+

µ ) + Aµ(W+
ν ∂νW−

µ − W−
ν ∂νW+

µ )) − 1
2g2W+

µ W−
µ W+

ν W−
ν + 1

2g2W+
µ W−

ν W+
µ W−

ν +

g2c2
w(Z0

µW+
µ Z0

νW−
ν −Z0

µZ0
µW+

ν W−
ν )+g2s2

w(AµW+
µ AνW−

ν −AµAµW+
ν W−

ν )+g2swcw(AµZ0
ν (W+

µ W−
ν −

W+
ν W−

µ ) − 2AµZ0
µW+

ν W−
ν ) − 1

2∂µH∂µH − 2M2αhH2 − ∂µφ
+∂µφ

− − 1
2∂µφ

0∂µφ
0 −

βh

(
2M2

g2 + 2M
g H + 1

2 (H2 + φ0φ0 + 2φ+φ−)
)

+ 2M4

g2 αh − gαhM
(
H3 + Hφ0φ0 + 2Hφ+φ−)

−
1
8g2αh

(
H4 + (φ0)4 + 4(φ+φ−)2 + 4(φ0)2φ+φ− + 4H2φ+φ− + 2(φ0)2H2

)
− gMW+

µ W−
µ H −

1
2g M

c2
w

Z0
µZ0

µH − 1
2 ig

(
W+

µ (φ0∂µφ
− − φ−∂µφ

0) − W−
µ (φ0∂µφ

+ − φ+∂µφ
0)

)
+

1
2g

(
W+

µ (H∂µφ
− − φ−∂µH) + W−

µ (H∂µφ
+ − φ+∂µH)

)
+ 1

2g 1
cw

(Z0
µ(H∂µφ

0 − φ0∂µH) +

M ( 1
cw

Z0
µ∂µφ

0 +W+
µ ∂µφ

− +W−
µ ∂µφ

+)− ig
s2

w

cw
MZ0

µ(W+
µ φ

− −W−
µ φ

+)+ igswMAµ(W+
µ φ

− −W−
µ φ

+)−
ig

1−2c2
w

2cw
Z0

µ(φ+∂µφ
− −φ−∂µφ

+)+ igswAµ(φ+∂µφ
− −φ−∂µφ

+)− 1
4g2W+

µ W−
µ

(
H2 + (φ0)2 + 2φ+φ−)

−
1
8g2 1

c2
w

Z0
µZ0

µ

(
H2 + (φ0)2 + 2(2s2

w − 1)2φ+φ−)
− 1

2g2 s2
w

cw
Z0

µφ
0(W+

µ φ
− + W−

µ φ
+) −

1
2 ig2 s2

w

cw
Z0

µH(W+
µ φ

− − W−
µ φ

+) + 1
2g2swAµφ

0(W+
µ φ

− + W−
µ φ

+) + 1
2 ig2swAµH(W+

µ φ
− − W−

µ φ
+) −

g2 sw

cw
(2c2

w − 1)Z0
µAµφ

+φ− − g2s2
wAµAµφ

+φ− + 1
2 igs λ

a
ij(q̄

σ
i γ

µqσ
j )ga

µ − ēλ(γ∂ + mλ
e )eλ − ν̄λ(γ∂ +

mλ
ν )νλ − ūλ

j (γ∂ + mλ
u)uλ

j − d̄λ
j (γ∂ + mλ

d)dλ
j + igswAµ

(
−(ēλγµeλ) + 2

3 (ūλ
j γ

µuλ
j ) − 1

3 (d̄λ
j γ

µdλ
j )

)
+

ig
4cw

Z0
µ{(ν̄λγµ(1 + γ5)νλ) + (ēλγµ(4s2

w − 1 − γ5)eλ) + (d̄λ
j γ

µ(4
3s2

w − 1 − γ5)dλ
j ) + (ūλ

j γ
µ(1 − 8

3s2
w +

γ5)uλ
j )} + ig

2
√

2
W+

µ

(
(ν̄λγµ(1 + γ5)U lep

λκeκ) + (ūλ
j γ

µ(1 + γ5)Cλκdκ
j )

)
+

ig

2
√

2
W−

µ

(
(ēκU lep†

κλγ
µ(1 + γ5)νλ) + (d̄κ

j C†
κλγ

µ(1 + γ5)uλ
j )

)
+

ig

2M
√

2
φ+

(
−mκ

e (ν̄λU lep
λκ(1 − γ5)eκ) + mλ

ν (ν̄λU lep
λκ(1 + γ5)eκ

)
+

ig

2M
√

2
φ−

(
mλ

e (ēλU lep†
λκ(1 + γ5)νκ) − mκ

ν (ēλU lep†
λκ(1 − γ5)νκ

)
− g

2
mλ

ν

M H(ν̄λνλ) − g
2

mλ
e

M H(ēλeλ) +

ig
2

mλ
ν

M φ0(ν̄λγ5νλ) − ig
2

mλ
e

M φ0(ēλγ5eλ) − 1
4 ν̄λ MR

λκ (1 − γ5)ν̂κ − 1
4 ν̄λ MR

λκ (1 − γ5)ν̂κ +
ig

2M
√

2
φ+

(
−mκ

d(ūλ
j Cλκ(1 − γ5)dκ

j ) + mλ
u(ūλ

j Cλκ(1 + γ5)dκ
j

)
+

ig

2M
√

2
φ−

(
mλ

d(d̄λ
j C†

λκ(1 + γ5)uκ
j ) − mκ

u(d̄λ
j C†

λκ(1 − γ5)uκ
j

)
− g

2
mλ

u

M H(ūλ
j uλ

j ) − g
2

mλ
d

M H(d̄λ
j dλ

j ) +

ig
2

mλ
u

M φ0(ūλ
j γ

5uλ
j ) − ig

2
mλ

d

M φ0(d̄λ
j γ

5dλ
j )

Here the notation is as in [46], as follows.

• Gauge bosons: Aµ,W ±
µ , Z0

µ, ga
µ

• Quarks: uκ
j , dκ

j , collective : qσ
j

• Leptons: eλ, νλ

• Higgs fields: H,φ0, φ+, φ−

• Ghosts: Ga,X0,X+,X−, Y ,
• Masses: mλ

d ,mλ
u,mλ

e ,mh,M (the latter is the mass of the W )

• Coupling constants g =
√

4πα (fine structure), gs = strong, αh =
m2

h
4M2

• Tadpole Constant βh

• Cosine and sine of the weak mixing angle cw, sw

• Cabibbo–Kobayashi–Maskawa mixing matrix: Cλκ

• Structure constants of SU(3): fabc

• The Gauge is the Feynman gauge.

Remark 4.5. Notice that, for simplicity, we use for leptons the same convention usually
adopted for quarks, namely to have the up particles in diagonal form (in this case the neu-
trinos) and the mixing matrix for the down particles (here the charged leptons). This is
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And now we get close to LHC

The remarkable fact is that the fluctuations of the Dirac operator

introduced the bosonic fields, gluons which are responsible for

the strong (nuclear) force, the W and Z bosons responsible

for the weak force, the photon and another field, which in view

of its coupling to the fermion is responsible for the breaking of

the symmetry and to give mass to the fermions.

This is the Higgs (Englert, Brout, Guralnick, Hagen, Kibble)

boson.

There is of course reason to be satisfied, but is this all?
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We should get numbers. In a form which can be confronted

with experiment. And while we cannot aim at agreement with

12 significant digits, at least two or three...

It is already nice to be able to explain with a single model inserted

in a larger framework the existing data (for example elliptic and

gravitational law orbits vs. epicycloids and a geocentric model)

But it is important to have some predictive power. Finding

Neptune in the right spot for example.

We do have a Neptune on sight, actually the Neptune. It turns

out that the parameters of the Higgs, including its mass, are a

function of the masses of the other particles!
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But we are not yet there...

The impressive lagrangian written above is still classical, one

has to quantize it and implement on it the renormalization pro-

gramme

Renormalization means that all constant quantities in the ac-

tion are a functions of the energy: running coupling constants

The running is given by the solution of an ordinary differential

equation, called the β function, calculated perturbatively to first

(occasionally second, rarely third) order in ~ by the n -point

amplitude (loop expansion)

I wish to stress that I am absolutely not an expert in this kind of calculations, but if one

wants to play this game one has to do it...
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The first think one has to decide is at which energy one write

the big lagrangian. This will give a boundary condition

One boundary condition can be given by the fact that in the

model obtained cranking the machine the strength of the fun-

damental interaction is equal

Experimentally is known that if there are no other particles ap-

pearing at higher energy the three coupling constant are almost

equal in one point:
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In the original Chamseddine Connes Marcolli the unification point was to

taken the one in which the two nonabelian force come together. Then the

calculation was performed using several articles using different normalizations,

correcting each other for the various coefficients, using Mathematica to solve

the equation . . .

The number quoted for the mass of the Higgs boson is 170 GeV

Which is definitively accurate to one digit

This is nontrivial, we started with a purely geometrical framework, with pa-

rameters spanning a range of four order of magnitude (many more if one

counts neutrino masses), so that the mass of the Higgs could have come to

be a fraction of the electron mass!

The mass of the Higgs is presently not yet known, the particular 170 GeV

value has been excluded, and there is some experimental signal at 126 GeV
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We have to look for some other aspects of the theory if we want to improve

on the model

While at the same time trying not to spoil the mathematical beauty of the

model, as well as its insertion in general framework

One ingredient: anomalies: classical symmetries which are not respected by

quantization

Another ingredient: input from the biggest experiment: The big Bang and

its evolution.
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The following is in collaboration with Andrianov and Kurkov JHEP 1005:057,2010; JHEP

1110:2011:001

The classical action is invariant for the following transformation

|Ψ〉 → e
1
2φ |Ψ〉

D → e−
1
2φDe−

1
2φ

Recalling the presence of
√

det g in the integral for the position representation of the Hilbert

space it is easy to see that this is actually related to Weyl rescaling

gµν → e2φgµν

This is a symmetry of the classical action, not of the regularized quantum

partition function

Z(D) =
∫

[dψ][dψ̄]e−Sψ

therefore there is an anomaly because a classical Weyl symmetry is not pre-

served at the quantum level by a regularized diffeomorphism invariant mea-

sure.
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One can now perform some standards calculations (which I spare)

splitting the partition function in the product of a term invariant

for Weyl transformations, and another not invariant, which will

depend on the field φ , the dilaton.

The dilaton becomes a collective mode of the fermions, mediat-

ing the breaking of Weyl symmetry

We assume therefore the presence, in an earlier epoch, of a

conformal point, in which the symmetry is restored. A phase in

which all particles are massless, and the Higgs potential does not

have the degenerate minimum
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We can calculate now the noninvariant part of the bosonic action

Snot = ln
Z(Dφ
Z(D)

The normalization constant µ can be fixed requiring that the constant term

in the action proportional to Λ4 vanishes. This gives

Λ = e
1
4µ

It is then possible to evolve the potential and find the following
properties for the Higgs-dilaton potential

• The existence of a local minimum

• The existence of an unbroken phase from which the potential
may roll

35



Plot of the effective Higgs-Dilaton potential:
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We see that for different values of φ , the potential V (H) has

a transition from a symmetric to a broken phase.
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What I have describe so far referred to the case of a constant dilaton.

It is possible to actually calculate explicitly the action of the collective modes:

Scoll = Λ2
(
α1(H2 − α2R)(e2φ(x) − 1) + α3e

2φ(x)φ;µφ
µ

;

)

+ α4

(
φ

µ
;µ + φ;µφ

µ
;

) (
α5H

2 − 1

3
·R− φ µ

;µ − φ;µφ
µ

;

))

−α6φ(x)
(
H;µH

µ
; −

1

6
RH2 + α7H

4 + α8CµναβC
µναβ

+α9F
µνFµν + α10WµνW

µν + α11GµνG
µν) + invariant part

where the αi are positive numbers, which depend on the couplings

The qualitative behaviour does not change, we are in the process of “putting the numbers

in”
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Conclusions

• What remains to be seen is if from the particle physics point
of view the noncommutative geometry is Kepler’s law, the
theory of gravitation cum differential calculus, the law of
diminishing proportions of Hooke, some further epicycloid or
Kant’s theory of heavens.

• Unfortunately we have to get our hand quite dirty in the
process

• But then, also the author of the paintings in this room did
have the same dirty hand of Michelangelo and the mason
who built the room
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