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I will report on some work which I have been doing for some

time with my collaborators, and which is a continuation of the

work I presented last year in this conference. Nevertheless this

talk will be selfcontained

I will make some considerations about relevant physical aspects

of the general framework of spectral geometry

The framework in which I will be presenting the work is that of

the spectral triples, although probably the whole work could be

recast in a way which does not make any mention of noncom-

mutative geometry.
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The starting point of Connes’ approach to is that geometry and

its (noncommutative) generalizations are described by the spec-

tral data of three basic ingredients:

• An algebra A which describes the topology of spacetime.

• An Hilbert space H on which the algebra act as operators,

and which also describes the matter fields of the theory.

• A (generalized) Dirac Operator D which carries all the in-

formation of the metric structure of the space, as well as

other crucial information about the fermions.
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While the formalism is geared towards the construction of genuine noncom-

mutative spaces, such as the noncommutative torus, spectacular results are

obtained considering almost commutative geometries

Those are simply the product of ordinary (commutative) spacetimes, times

an internal finite dimensional noncommutative structure, represented by a

matrix algebra

Choosing the internal space (the choice is almost unique) and writing an

action (the spectral action), based on the spectrum of the Dirac operator,

one reproduces the standard model coupled to gravity

And along the way the mass of the Higgs is predicted at a mass of ∼ 170GeV ,

a value experimentally disfavoured, but certainly not far from the actual value.

A surprising result for a totally geometrically theory

This indicates that we may be on the right track
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For a realistic theory another crucial ingredient is the chirality

γ = γ† , with γ2 = 1 . A generalization of γ5 , which cause the

splitting V

H = HL ⊕HR

Also important is another operator, J , representing charge conjugation, which however

plays no crucial role in this seminar

The central idea behind spectral geometry is that these ingredients are suf-

ficient to describe not only a geometry, but also the behaviour of the fields

defined on them, and their couplings to the geometry of spacetime (gravity).

Treating on an equal footing the external geometry (spacetime), with the

inner one, gauge degrees of freedom
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The main success of this view is the spectral action, where the algebra is the

product of the algebra of functions on spacetime, the Hilbert space is that of

fermion matter fields, and the Dirac operator contains all information on the

metric of spacetime, as well as the mass, couplings and mixings of fermions.

The spectral action contains two part, one is the bosonic action, to be read

in a Wilsonian renormalization group sense:

SB = Trχ
(
DA
Λ

)

where DA = D +A is a fluctuation of the Dirac operator, χ is the charac-

teristic function of the interval [0,1] , or some smoothened version of it, and

Λ is a cutoff

Then there is a “standard” fermionic action 〈Ψ|DA |Ψ〉

The bosonic action is finite by construction, the fermionic part needs to be

regularized
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Consider the fermionic action alone, a theory in which fermions

move in a fixed background

The classical action is invariant for Weyl rescaling

gµν → e2φgµν

ψ → e−
3
2φψ

D → e−
1
2φDe−

1
2φ

This is a symmetry of the classical action, not of the quantum partition

function

Z(D) =
∫

[dψ][dψ̄]e−Sψ

and therefore there is an anomaly because a classical symmetry is not pre-

served at the quantum level by a regularized measure.
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We can therefore either “correct” the action to have an invariant

theory, or consider a theory in which the symmetry is explicitly

broken by a physical scale

In fact we need a scale to regularize the theory. The expression of

the partition function can be formally written as a determinant:

Z(D,µ) =
∫

[dψ][dψ̄]e−Sψ = det

(
D

µ

)

The determinant is still infinite and we need to introduce a cutoff
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The regularization can be done in several ways. In the spirit of noncom-

mutative geometry the most natural one is a truncation of the spectrum of

the Dirac operator. This was considered long ago by Andrianov, Bonora,

Fujikawa, Novozhilov, Vassilevich

The cutoff is enforced considering only the first N eigenvalues of D

Consider the projector PN =
∑N

n=0 |λn〉 〈λn| with λn and |λn〉 the eigenvalues

and eigenvectors of D

N is a function of the cutoff defined as N = maxn such that λn ≤ Λ

We effectively use the N th eigenvalue as cutoff

The choice of a sharp cutoff could be changed in favour of a cutoff function, similar to the

choice of χ
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Define the regularized partition function

Z(D,µ) =
∏N
n=1

λn
µ = det

(
1l− PN + PN

D
µPN

)
= det

(
1l− PN + PN

D
ΛPN

)
det

(
1l− PN + Λ

µPN
)

= ZΛ(D,Λ) det
(
1l− PN + Λ

µPN
)

The cutoff Λ can be given the physical meaning of the energy

in which the effective theory has a phase transition, or at any

rate an energy in which the symmetries of the theory are funda-

mentally different (unification scale)

The quantity µ in principle different and is a normalization scale,

the one which changes with the renormalization flow
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Under the change µ→ γµ the partition function changes

Z(D,µ)→ Z(D,µ)e
1
γ trPN

On the other side

trPN = N = trχ
(
D

Λ

)
= SB(Λ, D)

for the choice of χ the characteristic function on the interval, a consequence of our sharp

cutoff on the eigenvalues.

We found the spectral action.

We could have started without it and the renormalization flow

would have provided it for free.
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Let us now consider the Dirac operator for the standard model,

in its barest essentiality (for our purposes). In the left-right

splitting of H , the operator D it is a 2× 2 matrix

D =

(
iγµDµ + A γ5S

γ5S
† iγµDµ + A

)

where

Dµ = ∂µ + ωµ , ωµ the spin connection.

A contains all gauge fields

S contains the Higgs field, Yukawa couplings, mixings. . .
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Technically the bosonic spectral action is a sum of residues and can be ex-
panded in a power series in terms of Λ−1 as

SB =
∑
n

fn an(D2/Λ2)

where the fn are the momenta of χ

f0 =

∫ ∞
0

dxxχ(x)

f2 =

∫ ∞
0

dxχ(x)

f2n+4 = (−1)n∂nxχ(x)

∣∣∣∣
x=0

n ≥ 0

the an are the Seeley-de Witt coefficients which vanish for n odd. For D2 of
the form

D2 = −(gµν∂µ∂ν1l + αµ∂µ + β)
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defining (in term of a generalized spin connection containing also the gauge
fields)

ωµ =
1

2
gµν
(
αν + gσρΓν

σρ1l
)

Ωµν = ∂µων − ∂νωµ + [ωµ, ων]
E = β − gµν

(
∂µων + ωµων − Γρ

µνωρ
)

then

a0 =
Λ4

16π2

∫
dx4√g tr 1lF

a2 =
Λ2

16π2

∫
dx4√g tr

(
−
R

6
+ E

)
a4 =

1

16π2

1

360

∫
dx4√g tr (−12∇µ∇µR+ 5R2 − 2RµνR

µν

+2RµνσρR
µνσρ − 60RE + 180E2 + 60∇µ∇µE + 30ΩµνΩ

µν)

tr is the trace over the inner indices of the finite algebra AF and in Ω and E
are contained the gauge degrees of freedom including the gauge stress energy
tensors and the Higgs, which is given by the inner fluctuations of D
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We can split the partition function in the product of a term
invariant for Weyl transformations, and another not invariant,
which will depend on the field φ , the dilaton

Z = ZinvZnot

The terms in Znot exist due to the Weyl anomaly and we can calculate them.

Using Dφ = e−
1

2
φDe−

1

2
φ consider the identity

Z(D) =
(∫

[dφ] 1
Z(Dφ)

)−1 ∫
[dφ] Z(D)

Z(Dφ)

Since the first term is invariant by construction, Zinv =
(∫

[dφ] 1
Z(Dφ)

)−1
, the

second is the not invariant one

Znot(D) =
∫

[dφ]e−Snot =
∫

[dφ] Z(D)
Z(Dφ)
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hence

Snot = ln
Z(Dφ)
Z(D)

The calculation of Snot can be done easily for φ constant and

the result is

Snot =
∫ φ
0 dt′

(
1− Λ2 log Λ2

µ2∂Λ2

)
Tr Θ

1− (e−
t′
2De

−t
′

2 )2

Λ2



=
∫ φ
0 dt′

(
1− Λ2 log Λ2

µ2∂Λ2

)
SB(Λ, (e−

t′
2De−

t′
2)2)

This is a slight modification of the spectral action
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Let me stress the fact that we used very few ingredients and the
analysis is quite independent on the details. We have a Higgs
field and a dilaton. We can therefore ask ourselves if we can
say something about the effective potential involving these two
fields, and its possible role in the early universe

Therefore we make the brutal approximations of neglecting all
other fields and the derivative of the Higgs, and retain in the
heath kernel expansion only the terms involving the Higgs field
H and the dilaton φ

The behaviour of D under Weyl rescaling gives the transforma-

tion of H under such transformation. Only the H4 term in
the effective potential is invariant, and it can be multiplied by a
constant quantity ( φ0 ). This gives, in this approximation, the
invariant part of the effective potential
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The other terms of the effective potential can be calculated using the heath

kernel, they have been calculated fore the general case and it is sufficient

to set to zero everything except H and φ and their powers (but not their

derivatives)

The effective potential, sum of the invariant and not invariant part has the form has the

form

V = V0 + a(e2φ − 1) + bH2(e2φ − 1)− cH4(φ+ φ0) + EH2
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The coefficients are in principle calculable at one loop, and are functions of

the the parameters Λ and µ and there is another (integration) constant

φ0 , in principle also calculable.

with a shift φ→ φ− φ0 and a redefinition if the constants the potential can

be written as

V = V0 +Ae4φ +BH2e2φ − CH4 + EH2

Again the constants depend on Λ and µ , some relations among them are

fixed
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The full calculation of all these constants is possible, and is partially under

way. Nevertheless we can immediately learn something just by imposing

• The existence of a local minimum

• The existence of an unbroken phase from which the potential may roll

down to the broken phase

A choice of signs is possible: A > 0, B > 0, C > 0, E < 0
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The choice of signs, and the relation among the constant, imply:

A > 0⇒ 1− 2 ln Λ2

µ2 > 0 B > 0⇒ 1− ln Λ2

µ2 < 0 B + E > 0

which in turn implies that φ0 < 0 and

e
1
2µ = 1.64µ > Λ > e

1
4µ = 1.28µ

Hence Λ and µ must be of the same order, but not equal, at least within

the scopes of our (1-loop) approximation
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We can now plot the effective Higgs-Dilaton potential for a rea-

sonable choice of parameters:
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We see that for different values of φ , the potential V (H) has

a transition from a symmetric to a broken phase.
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Conclusions

• The bosonic spectral action emerges from the fermionic one

and Weyl anomaly

• The renormalizion flow (scaling of µ ) plays a central role

• The effective Higgs-dilaton potential also emerges with de-

sirable features: broken and symmetrical phases, roll down
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