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What is Quantum Field Theory?

The presence of a question mark in the title of the workshop
puts an heavy responsibility on the speakers. I feel I have to give
an answer to the question.

Moreover, I teach the Quantum Field Theory class at my Uni-
versity. So lack of an answer not only may jeopardize my right
to have dinner here, but my job as well!

On the other side there is the fact that notoriously all I can do
is to multiply matrices, better if they are 2× 2 .

Therefore I will try to give an answer using the least sophisticated
tools I can find. I will be schematic to the extreme and sacrifice
not only rigour, but also precision and even correctness for the
sake of giving an impressionistic but complete view.
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To do a Quantum Field theory the main ingredient is: Fields

They are vectors on an Hilbert space which transform under

some representation of some groups which I call symmetries.

One of these symmetries is the Lorentz group, and fields are

either fermions or bosons. Matter fields in nature are almost

always fermions, while bosons appear as the mediators of the

forces related to the symmetries, in other words they appear in

the covariant derivative.

The almost above is there because of the Higgs boson
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An important ingredient is the chirality operator, which I will call

γ , with γ2 = 1 , so that the Hilbert space of fermions splits into

the two eigenspaces of the chirality:

H = HL ⊕HR

To have dynamics of the fermions I need a propagator, coming

form an action. And I will schematically write

SF = 〈Ψ|D |Ψ〉

with D , the inverse of the propagator, is an operator which I

will call generically the Dirac operator.
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D is a self-adjoint, unbounded operator and as such it can be
diagonalized. Since I declared that I only know matrices I will
assume that is has discrete spectrum. This means that I am
considering Euclidean and compact theory. A sin that I hope
will be forgiven. . .

But actually, how do I know that I am somewhere, so far I have
only introduced vectors and operators (matrices). One operator,
the Dirac operator plays a dynamical role, but what happened
to spacetime?

In the spectral spirit of this talk I will consider a set of operators
which form a commutative algebra and call this spacetime

Here I implicitly using the machinery of noncommutative geom-
etry, which is of course the inspiration behind all this.
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Any commutative C∗ -algebra is always the algebra of continuous

functions of topological space. Therefore the identification of a

commutative subalgebra A of the observables of my Hilbert

space gives me the topology of space.

The Dirac operator then encodes the geometry. It gives the

distance among the points of space, hence the metric. The

growth of its eigenvalues gives the (spectral) distance. It gives

a representation of the exterior forms algebra. . .

These three main ingredients, H, D,A form the basis of Connes’

spectral triple. Essential seasonings are the chirality γ which I

already introduced, and the charge conjugation operator J . An

antilinear operator.
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We have the action, which so far is the action of fermions in

a fixed background, because I am not yet letting D fluctuate.

We can therefore proceed to quantize. Write down the partition

function

Z(D) =
∫

[dψ][dψ̄]e−SF

This expression is formally the determinant of D , but to actually

give it a meaning I need to do some work.

First of all I can only calculate determinants of dimensionless

quantities, therefore I need a scale µ to divide D and write

(still formally)

Z(D) = det

(
D

µ

)
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The expression is still formal because the matrix is infinite, and

he eigenvalues of D are growing

Therefore I need to regularize the theory

In the spirit of this talk most natural regularization is a truncation of the

spectrum of the Dirac operator at some scale Λ .

The cutoff is enforced considering only the first N eigenvalues of D
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Consider the basis of eigenfunctions of D ordered in increasing

values of the eigenvalues (with repetitions due to degeneracy):

D |λn〉 = λn |λn〉

the integer N defined as

N = maxn such that λn ≤ Λ

and the projector

PN =
N∑
n=0

|λn〉 〈λn|

We effectively use the N th eigenvalue as cutoff
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Define the regularized partition function

Z(D,µ) =
∏N
n=1

λn
µ = det

(
1l− PN + PN

D
µPN

)
= det

(
1l− PN + PN

D
ΛPN

)
det

(
1l− PN + Λ

µPN
)

= ZΛ(D,Λ)det
(
1l− PN + Λ

µPN
)

The cutoff Λ can be given the physical meaning of the energy

in which the effective theory has a phase transition, or at any

rate an energy in which the symmetries of the theory are funda-

mentally different (unification scale)

The quantity µ in conceptually different from Λ and is a nor-

malization scale, which changes with the renormalization flow

9



Under the change µ→ γµ the partition function changes

Z(D,µ)→ Z(D,µ)e−(log γ) trPN

On the other side

trPN = N = trχ
(
D

Λ

)
where χ is the characteristic function on the interval. Had we chosen smooth

cutoff of the eigenvalues this function would reflect this choice.

The renormalization flow forces us to add another term to the
action. This is the Spectral Action introduced by Chamseddine
and Connes

SB(Λ, D) = trχ
(
D

Λ

)
trχ

(
D2

Λ2

)

It is again a spectral object. A regularized trace
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Now we are considering D as a dynamical object, and the dy-

namics are consequence of its fluctuations

In particular consider it as the sum of a background part, and of

a connection part

D = D0 +A

So far I have totally generic. Let me consider some examples
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The calibrating example is to consider as Hilbert space of the usual fermions.

As algebra that of continuous functions on spacetime, and as Dirac operator

what we usually call the Dirac operator, which we consider to be the sum of

a backgroung operator, plus a fluctuating part, the connection

D = D0 + γµAµ

D = γµ∂µ + eγµAµ

From these data it is possible to reconstruct, in a purely algebraic

way, the geometry of spacetime, its metric, cohomology, bundles

etc. This is from a mathematical point of view the essence of

Connes noncommutative geometry programme.

The fermionic action is the usual one, so no surprises there.

As for the bosonic part, it can be calculated using heath kernel

techniques.
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For any pseudo differential operator A of order m in d dimensions

Tr (A−s) =
1

Γ(s)

∫ ∞
0

dt (t(s− 1) Tr e−tA)

and expanding

Tr e−tA =
∑
n
t
n−d
m

∫
M

√
gddxan(x,A)

Considering a smoothened version of χ , which must be analytic, the expan-

sion becomes a sum of residues

Trχ(A) =
∑
n
f2n(χ)a2n(A)

with f0 =
∫

dxxχ(x); f2 =
∫

dxχ(x); f2n+2 = (−)nχ(n)(0)
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The heath kernel was developed for operators of the Laplacian type, which

luckily is our case, therefore we can just read the coefficients (Seeley-De

Witt) an from a book

The coefficient a0 is always constant and proportional to the

volume of spacetime times Λ4

In this particular case a2 = 0 and

a4 = −
1

4

1

12
FµνFµν

and the curious 1
12

is the value of the fine structure constant at the “unifi-

cation scale” Λ

Apart from this fine tuning we have found electrodynamics
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And now let us go for the big price: The standard model

In order to this I will have to generalize the commutative algebra,

which in the commutative case describe an ordinary manifold, to

a noncommutative algebra describing a noncommutative space

Actually the generalization will be quite mild, to the product of

a continuous commutative geometry times a finite noncommu-

tative internal space

First another bit of spectral mathematics. The game is to represent all

of geometry form a spectral point of view. I have given you the spectral

interpretation for a topological metric space, the spectral triple. But which

condition should be imposed in order to describe a manifold?
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There are seven conditions that the package A,H, D, γ, J must satisfy so

that the resulting space is a manifold for a commutative A . In the noncom-

mutative case wi will naturally speak of this as a Noncommutative Manifold.

Let me flash a condensed version of all of the conditions without
too much comments

1. (Dimension). There is a nonnegative integer d such that the eigenvalues

of |D| grow as n
1

d

2. (Regularity). For any a ∈ A and any integer k , a and [D, a] belong

to the domain of δk , where δ(a) = [|D|, a] .

3. (Finiteness). The space H∞ =
⋂
kDom(Dk) is a finitely generated pro-

jective left A module.
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4. (Reality). The existence of the charge conjugation J with the commu-
tation relation fixed by the number of dimension. Moreover

[a, Jb∗J−1] = [[D, a], Jb∗J−1] = 0 , ∀ a, b ∈ A

5. (Orientation). For even dimensions there exists the chirality operator

γ with commutations rules with J,D dependent on the number of

dimensions. The operator is a representation of the volume form.

6. (Poincaré duality). The intersection form K∗(A)×K∗(A)← Z deter-

mined by the Fredholm index maps of the operator D and on the K -

theory K∗(A⊗Ao) is nondegenerate. This is a tough one! I am giving it

without explanation, although it is very important for neutrino masses. . .
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To reproduce the standard model the idea is to have a non-

commutative geometry which is the product of an ordinary four

dimensional manifold times a finite dimensional matrix algebra

The algebra is therefore the tensor product of continuous func-

tions times a matrix algebra, i.e. the algebra of matrix valued

functions which we represent on the Hilbert space H

The vectors of the Hilbert space transform under a representa-

tion of the unitary elements of the algebra, which form the gauge

group

Only fundamental and trivial representations are allowed. Luckily

the standard model uses only these

18



Hence we look for a noncommutative geometry which is the

product of the continuous commutative spectral triple introduce

above by a finite noncommutative geometry represented by a

noncommutative matrix algebra

A = C(R4)⊗AF
H = Hc ⊗HF

D0 = γµ∂µ ⊗ I + γ5 ⊗DF
γ = γ5 ⊗ γF ; J = J ⊗ JF
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Under some rather mild assumptions (like the need to have a

chiral nontrivial theory, free of U(1) anomalies) the internal ge-

ometry is described by the algebra

AF = C⊕H⊕M3(C)

Where H is the quaternion algebra and M3 the algebra of 3× 3 matrices.

The gauge group of this algebra (unimodular unitary elements)

is the required

U(1)⊗ SU(2)⊗ SU(3)

We will take however take the metric gµν = 1
2{γ

µ, γν} to be non-

necessarily flat. We are thus coupling the theory to a nontrivial

gravitational background with spin connection ωµ .
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In HF we put (by hand) all the known fermions, replicated for

three generations. It is a 96 dimensional space of fermions

(((2 quarks × 3 colours) + 2 leptons)× 2 chiralities + antiparticles)× 3 generations

The strategy is to find the noncommutative geometry which

represents the standard model, using as input almost all masses

and coupling of the theory

The reason for the almost will be clear in a moment
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In the basis in which γ is diagonal the Dirac operator is one of

my beloved 2× 2 matrices it has the form

D =

(
iγµDµ + A γ5S

γ5S
† iγµDµ + A

)

where

Dµ = ∂µ + ωµ , ωµ the spin connection.

A contains all gauge fields

S contains all field and costants which connect the left with the right

fermions: the Higgs, Yukawa couplings, mixings. . .
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Here I am skipping lots of important aspects including:

• The representation of the algebra on H . Highly nontrivial, reducible and
with a crucial use of the charge conjugation operator J

• The role and the importance of right handed neutrinos

• The fact that for how H was biult the fermionic degrees of freedom
are overcounted, and therefore there are unphysical couplings among
particles with the same chirality. This is solved by the presence of J

appearing in the fermionic action 〈JΨ|DΨ〉

• The role of the renormalization flow, and the fact that all couplings are
equal at the scale Λ

Then you “just” crack the machine, as we did for electrodynam-
ics, using heath kernel. It is a bit hard to cranck, but in the end
you get
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Which believe it or not ir the full lagrangian of the standard
model coupled to gravity, with all gory details, all couplings and
so on, but with a couple of remarkable features:

• There was no need to input the Higgs mass among the
parameters , therefore there is prediction, the mentioned
170GeV

• Among the gravitational terms there are terms involving the
square of the Riemann tensor

• There is a non-standard coupling of the Higgs to the grav-
itational background of the kind H2R . This point and the
previous have possible cosmological interest.
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I do not think the theory I sketched in the last part of the talk has

already the maturity for experimental predictions, Nevertheless I

still find it fascinating that a theory without so little input finds

a Higgs mass relatively close to the expected value.

What is more important in my opinion is the fact that a spectral

point of view, despite describing commutative and noncommu-

tative geometries enable you to give a tentative answer to the

question of this meeting.
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What is Quantum Field Theory?

Nothing but a determinant and a trace
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Tanti auguri Manolo!!!
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