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In this talk I will present a review of recent developments in

Noncommutative Geometry aimed at those who are not active

in the field, apologies to the experts

I will of course use my personal preferences, prejudices, (lack of)

expertise to choose which topics to threat in more or less detail

I will also concentrate on the physical applications of the theory,

mostly leaving aside the rich mathematical developments.

I will not give the original references but will refer to some reviews
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So, what were we talking about?

Unless you are lucky enough to be too young to having been
around ten years ago, you will remember a famous article of
Seiberg and Witten called String theory and noncommutative
geometry

This article, which is Witten’s second most cited article accord-
ing to Spires, stimulated an enormous amount of interest in
Noncommutative Geometry which became a hot topic for a cou-
ple of years. To the extent that there are still people considering
it a part of string theory.

Then the interest in the string community diminished as other
interesting stringy topics became hot, died, other topics came
and went
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There were people doing noncommutative geometry before, and

there is still a sizeable community still doing it, although the link

with string people has been lost (fortunate? a pity? )

Undeniably however the connection with string theory gave a

strong impulse to the study of noncommutative geometry and

to field theories on noncommutative spaces in particular

3



So, what is Noncommutative Geometry?

The answer: “it is the theory for which [x, y] = iθ ” is extremely

reductive. Like saying that quantum mechanics is the theory for

which the exchanges of energy are discrete.

I prefer to say see noncommutative geometry as a bag of tools

which describes geometry not as a set of points, lines, vectors

etc. but rather using the “functions” defined on it. And the tools

are sufficiently flexible to be applied also in cases for which it does

not make sense to talk of points of the space. In this case the

functions become objects multiplied in a noncommutative guise.
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In this respect the quantum phase space is the master example.
Due to the uncertainty principle we cannot speak of points on
phase space, and we are led to the description of observables as
noncommuting operators

In mathematics there are several interesting examples of non-
commutative spaces which have nothing to do with noncom-
muting coordinates

Several of the recent applications of noncommutative geometry
concern the possibility that spacetime at the Planck length is
described by a different form of geometry

There are several reasons, going back to Bronstein in the 30’s to
argue that in a theory of quantum gravity it would be impossible
to measure the position of points with Planck length accuracy,
because a black hole would otherwise be formed.
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This is quite natural in a theory like string theory in which space-

time is a derived concept (a field), and in fact in the vertex op-

erators of an strings reproduce (in the presence of a background

field and in a particular limit) a noncommutative geometry of

the kind [xi, xj] = iθij which in turn is described, at the level of

fields and function, by the Grönewold-Moyal product

(f ? g)(x) = fe
iθij

2
←−
∂i
−→
∂j−
←−
∂j
−→
∂ig = fg +

iθij

2
(∂if∂jg − ∂jf∂ig) +O(θ2)

This has led to the study of field and gauge theories on non-

commutative spaces in which the ordinary product among fields

is substituted by this ? -product
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So, what else Noncommutative Geometry?

There have been historically some aspects of noncommutative
geometry notable for their physical applications

• Noncommutative field theory

• Connes’ approach to the standard model

• Fuzzy spaces

And then there has been the study of quantum groups
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I will mainly concentrate on the field theory (with a mention

of quantum groups) but first let me say a few words on fuzzy

spaces and standard model.

In Connes’ approach the standard model is aimed at understand-

ing the “geometry” of it

The idea is again that all information about a physical system is

contained in the algebra of functions (spacetime) represented as

operators on a Hilbert space (states), with the action and metric

properties encoded in a generalized Dirac operator

The game is then just to see which sets of data (an algebra, a

Hilbert space, a Dirac operator) reproduce the standard model
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For example if the spacetime is two copies of a manifold the gen-

eralization of the electrodynamics action gives a U(1)× U(1)→ U(1)

Higgs mechanism

Instead for an algebra given by functions on spacetime with val-

ues in C⊗H⊗M3 , (complex numbers, quaternions, three by

three matrices) we obtain the standard model

The action is purely based on spectral properties of a covariant

Dirac operator
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The fascinating aspect of this theory is that the Higgs appears
naturally as the “vector” boson of the internal noncommuta-
tive degrees of freedom. In the process of writing the action
all masses and coupling are used as inputs, but one saves one
parameter, which can be the Higgs mass

There are problems with this approach as well, mainly the fact
that it is naturally classic, and that the quantization is done in
the “commutative” way, which is somehow anticlimactic.

Recently work by Chamseddine, Connes and Marcolli several of
the earliest problems (neutrino masses, fermion doubling) have
been solved, but the model is growing in complexity, and is not
particularly easy to manage. Still I feel the original idea remains
an excellent one

Review: Chamseddine, Connes arXiv:0812.0165

10



Fuzzy spaces are finite (matrix) approximations to spaces which
however, unlike ordinary lattices, maintain the symmetries of the
original spaces, at the price of having a noncommutative product
among functions

The prototype is the two-sphere described by noncommuting co-
ordinates [xi, xj] = κεijkxk , but there are fuzzy approximations
to other spheres, projective spaces and the disc, and supersym-
metric versions

Recently some groups have started to do actual calculation of
field theory on these fuzzy spaces, finding the phase transitions.
While there has been no phenomenological application yet, the
tool is being developed for actual calculations and we are not
too far from it

Review: Balachandran Kurkcuoglu Vaidya, Lectures on fuzzy and fuzzy SUSY

physics. hep-th/0511114
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Field and gauge theories with the Moyal product are by far the

most studied aspects of noncommutative geometry

See Szabo Quantum field theory on noncommutative spaces Physics Report

hep-th/0109162

The prototype of this is a φ4 theory described by the action

S? =
∫
ddx∂µϕ ? ∂

µϕ+m2ϕ ? ϕ+
g2

4!
ϕ ? ϕ ? ϕ ? ϕ

Apart from the mentioned string theory, one of the hopes for the study of

noncommutative field theory was that the presence of the cutoff θ would

regularize the theory (in analogy withe ~ and the ultraviolet catastrophe of

the black body)
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The free theory is unchanged because of the integral property∫
ddxf ? g =

∫
ddxfg . But the vertex gets a phase.

V = (2π)4gδ4

 4∑
a=1

ka

 ∏
a<b

e−
i
2θ
µνkaµkbν

The vertex is not anymore invariant for exchange of the momenta

(only for cyclic permutations), and causes a difference between

planar and nonplanar diagrams

��
��
k1

q
k2 ��

��
��
��
��
��
��
��qqqqk1 k2
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This is the Ultraviolet/Infrared Mixing. The phenomenon for

which some ultraviolet divergences disappear, just to reappear

as infrared divergences.

This can heuristically seen as a consequence of the generalized uncertainty

principle. the short distance behaviour in coordinate xi is linked to the long

distance behaviour in θijxj

At any rate not all divergences are suppressed (planar diagrams

are unchanged)
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The strategy can now be to either change the action or change
the product

There are two known actions which are renormalizable at all
orders

Review Rivasseau Non-commutative Renormalization arXiv:0705.0705

There are two actions which can be shown to be renormalizable
to all orders. They are corrections to the earlier S?

SGW = S? +

∫
dx

Ω2

2
(θ−1
ij x

jϕ) ? (θ−1ikxkϕ)

SParis = S? +

∫
dx αϕ ?

1

θ2�
ϕ

Although the two models above do not look particularly “natural”, they pro-

vide the first examples of a nonperturbatively renormalizable interacting field

theory without Landau ghost. The dream of constructive field theory.
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Another possibility is to change the ? product and keep the
same action

It is possible to prove that any associative translationally in-
variant product gives the same structure of Ultraviolet/Infrared
mixing as the one of the Moyal product

No matter how complicated is the product, if it is translationally
invariant [xi, xj] = θij is constant

Then, although the Green’s functions and also the propagators
may be different, the one loop contribution to the propagator
will always be of the same type as in Moyal

Ultraviolet/Infrared mixing seems to be intimately connected with the struc-

ture of spacetime, and although it may be corrected by extra terms in the

action, it carries information about the pointless nature of noncommutativity
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Even if translationally invariant a field theory based on the Moyal

product is not Lorentz invariant

In four dimension θij is not a scalar and naively it should trans-

form under rotations and boost, and picks up two preferred di-

rections in space

It turns out that a field theory with the Moyal product is has a

quantum symmetry of a particular kind, obtained by a Drinfeld

twist

Review: Aschieri, Dimitrijevic, Kulish, Lizzi, Wess

“Noncommutative Spacetimes: Symmetries in Noncommutative Geometry and Field

Theory”,

Springer Lecture Notes ON SALE APRIL 23!!!
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Consider the usual action of the Lie algebra L of differential

operators on the algebra A of functions with the usual commu-

tative product

The usual product can be seen as a map from A⊗A → A

m0(f ⊗ g) = fg pointwise multiplication
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The Leibnitz rule imposes a coalgebra structure of the Lie alge-

bra:

M(fg) = M(f)g + fM(g) = m0(∆(M)(f ⊗ g))

where M is a generic element of the Lie algebra, and

∆ : L→ L⊗ L

∆(M) = M ⊗ 1 + 1⊗M
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Consider the Moyal product comes can be seen as a Twisted

product

(f ? g)(x) = m0[F−1f ⊗ g] ≡ mθ[f ⊗ g]

where m0(f ⊗ g) = fg

is the ordinary product and

F = e
i
2θ
ij∂xi⊗∂yj

is called the twist.

The Noncommutative space is obtained twisting the tensor prod-

uct, and using the ordinary product.
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We have to then revise the Leibnitz rule:

M(f ? g) = mθ∆θ(f ⊗ g) = m0∆M(F−1(f ⊗ g))

where

∆θ = F∆F−1

The algebra structure remains unchanged, what changes is the

coalgebra structure, that is the way to “put together represen-

tations”.

counit and antipode remain unchanged.
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We still have a symmetry, but it is a twisted and we have to
understand the meaning

Since the Lie algebra structure remains the same we can still talk of the usual

particles (Wigner representation)

Take the point of view to twist with the above operator, in its
proper representation, all products encountered

Given a generic product from the product of two spaces into a third

µ : X × Y −→ Z

we associate a deformed product

µ? : µ ◦ F−1(X ⊗ Y ) −→ Z

In particular when X = Y = Z = C(M) , the algebra of functions
on a manifold, the usual pointwise product is deformed in the
appropriate ? product
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The presence of a symmetry, even if a quantum one, is always a

good guidance, and it has been used for S-matrix, gravity, spin

statistics, phenomenology, and for the construction and applica-

tion to other noncommutative geometries

As an example I will describe very briefly how a coherent twisting procedure

makes the S-matrix of Moyal and the Wick-Voros products equivalent

Introduce the Wick-Voros:

z± =
x1 ± ix2

√
2

∂± = ∂
∂z±

= 1√
2

(
∂
∂x1 ∓ i ∂∂x2

)
f ?Vg =

∑
n

(
θn

n!

)
∂n+f∂

n
−g = feθ

←−
∂+

−→
∂−g
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The two products are equivalent in the sense that there is an invertible map

T = e
θ

4
∇2

with the property

T (f ?Mg) = T (f) ?VT (g)

Nevertheless the four points greens functions are different

G(4)
0 =

e
∑

a≤b
ka•kb∏4

a=1 (k2
a −m2)

δ

(
4∑

a=1

ka

)

where

ka • kb =

 −
i
2
θijkaikbj Moyal

−θka−kb+ = −1
2

(
θkaikb

i + iθijkaikbj
)

Wick-Voros

The Green’s functions are therefore different
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The S-matrices in the two cases are however the same, if one twists all the
products involved (and proper recognition of the asymptotic states):

1. The tensor product in the two particle state

F̃−1
? |ka〉 ⊗ |kb〉 = |ka, kb〉? = e−

i

2
θijkai⊗kbj |ka〉 ⊗ |kb〉 = a†ka ? a

†
kb
|0〉

2. The inner product〈
·
?∣∣ ·〉 : |k〉 ⊗

∣∣k′〉 −→ 〈·| ·〉 ◦ F−1 : |k〉 ⊗
∣∣k′〉 = F̃−1(k, k′) 〈k| k′

〉
= 〈0| ak ? a†k′ |0〉
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3. Inner product among two-particle states〈
k1k2

?∣∣ k3k4

〉
= 〈·| ·〉 ◦∆?(F−1)( |k1k2〉 ⊗ |k3k4〉)

where by ∆?(F−1) is defined by ∆(∂ ⊗ ∂) = ∆(∂)⊗∆(∂)

〈
k1, k2

?M∣∣ k3, k4

〉
= e

i

2
θij(k1i+k2i)(k3j+k4j) 〈k1, k2| k3, k4〉

〈
k1, k2

?V∣∣ k3, k4

〉
= eθ(k1−+k2−)(k3++k4−) 〈k1, k2| k3, k4〉
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Putting everything together

?

〈
k1, k2

?∣∣ k3, k4

〉
?

= 〈0| ak1
? ak2

? a†k3
? a†k4

|0〉

= e−
∑

a<b
ka•kb 〈k1, k2| k3, k4〉

Only if all these twistings are made we find that the two S-matrices are the
same as expected

I think however that we still have to learn completely how to “use” the
quantum symmetry for physical applications.

The main challenge being the multiparticle states, since the “putting to-
gether” of representations is governed by the coproduct.

27



All these aspects of noncommutative field theories are now get-

ting to be mature for phenomenological applications, and actual

physical prediction. The most promising of which are for cos-

mology

Sorry no review yet, but look for example at Karwan 0903.2906 for cosmology

and the forthcoming lectures of Gracia-Bond̀ıa on the proceedings of the

Holbaeck conference for the gravity part
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But, are we using the right kind of noncommutativity?

There is another kind on noncommutative space, connected to

a quantum symmetry which has always attracted attention: κ -

Minkowski

[x0, xi] =
i

κ
xi , [xi, xj] = 0
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This is the homogenous space of a deformed symmetry (called

κ -Poincaré for which not only the coproduct, but also the com-

mutator is deformed

The presence of deformed commutation relations brings different

Casimir functions, deformations of m2 = e2 − P2 , and a defor-

mation of the dispersion relations

Unfortunately the new commutation relations are non linear, and therefore

one must be careful on which basis to use

Field and gauge theories based on κ -Minkowski are being built.

Here the problem is that we have a quantum symmetry that

deforms also translations. Nevertheless there is activity in this

area
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Of extreme interest is the possibility to have gravity as an emergent phe-
nomenon from a matrix model obtained from noncommutative geometry. In
a nutshell this is the idea

Start from a matrix model in d dimensions with a flat metric gab

S = −Tr [Xa, Xb][Xc, Xd]gacgbd

with equations of the motion

[Xa, [Xb, Xc]]gab = 0

with a solution (not the most general) which is basically the one of the Moyal

product ( θ a number, not a matrix in the internal indices)

[Y a
0 , Y

b
0 ] = θab0
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A more interesting solution is
Xa

0 = Y a
0 ⊗ In

consider now small fluctuations

Xa = Xa
0 +Aa(Y )

where Aa(Y ) = Aa0 +Aαλα is a matrix valued function which split into a trace

part and a traceless part, where λα are the generators of SU(n) . Make now

a different splitting, in which you separate the traceless part
Xa = Y a +Aαλ

α

but now we have nonconstant commutativity for the “background”

[Y a, Y b] = θab(Y )
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We now couple a scalar field Φ to the theory coupled with the action

Sφ = −Tr [Xa,Φ][Xb,Φ]qab

we have that since we are interpreting the X ’s as generalized noncommuta-
tive coordinates, which in a “commutative limit” gives

[Xa,Φ] ∼ θab∂aΦ + [Aa,Φ]

so that the action becomes

Sφ = −Tr θabθcdgac(∂bΦ + [Ac,Φ])(∂dΦ + [Ad,Φ]) = −TrGab(Y )DaΦDbΦ

Gab = θacθbdgcd

DaΦ = ∂aΦ + [Aa,Φ]
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In this way we have that gravity emerges in a low energy (com-

mutative) approximation of a matrix theory. This is turn would

be an approximation of a more general noncommutative space

described by a noncommutative algebra with a representation as

operator (infinite matrices) on some Hilbert space

It is possible to couple fermions to the theory, consider gauge

theory and connect with the matrix models coming from branes

Review: Steinacker arXiv:0712.3194
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So, should we keep on doing Noncommutative geometry?

I do not know about you, but I think that the structure of spacetime at the

Planck scale is one of the fundamental problems in today’s physics.

Studying noncommutative geometry we are learning a lot, and while it may

be likely that we have not yet hit on the right structure, I believe that the

correct theory will need to use the tools and the idea of noncommutative

geometry

There has been already a connection between strings and noncommutative

geometry, and lately also connections with loop quantum gravity are emerging

At the same time we are finally getting, certainly through astroparticle and

cosmology, and possibly LHC, inputs of higher energy physics. The totally

novel “Planckish” may not be so far away, and it may be described by a new

spacetime. Which is worth investigating
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