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Among the original motivations to consider space(time) to be

noncommutative there was the hope that the presence of a cutoff

would cure some of the ultraviolet problems of field theory

The analogy is with the origin of quantum mechanics where the

presence of ~ cures the ultraviolet catastrophe of black-body

radiation, and introduces noncommutativity on phase space

Soon after the introduction of field theory on noncommutative

space it was realised that the presence of a cutoff does not ensure

the cancelation of infinities.

Moreover there was the appearance of the Ultraviolet/Infrared

mixing
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Consider a field theory on a noncommutative space (for exam-

ple bosonic ϕ?4 ), where the noncommutativity of the space is

enforced by the Grönewold-Moyal product

Then it is true that some ultraviolet divergence disappear, But

not all of them

The infinities which disappear from the ultraviolet, reappear as

infrared divergences

To be more specific consider a field theory described by the action

S =
∫

dxd
(

1

2

(
∂iϕ ? ∂iϕ−m2ϕ ? ϕ

)
+

g

4!
ϕ ? ϕ ? ϕ ? ϕ

)
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Where ? is the usual Grönewold-Moyal product and we consider the theory

to be Euclidean (or equivalently we do not consider timespace noncommuta-

tivity)

Let me give two expressione for this product

(f ?Mg)(x) = e
i
2θ
ij∂yi∂zjf(y)g(z)

∣∣∣∣
x=y=z

(f ?Mg)(x) =
1

(2π)
d
2

∫
dpddqdf̃(q)g̃(p− q)eip·xeipiθ

ijqj

where f̃ and g̃ are the usual Fourier transforms of f and g

The two definitions have different (dense) domains of definition, but coincide on their in-

teresction

3



Since for this product
∫

dxdf ?Mg =
∫

dxdfg the quadratic (free)

theroy is the same as in the commutative case

The vertex changes. For four incoming momenta we have

VMoyal = V0e−
i
2

∑
a≤b θ

ijkaikbj

where the ordinary vertex is

V0 = −i
g

4!
(2π)dδd

 4∑
a=1

ka



This vertex is not invariant for arbitrary permutation of the mo-

menta, therefore planar and nonplanar diagrams have different

behaviour
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The planar diagram is unchanged, because the momenta in the
exponential cancel once conservation of momentum is imposed

G
(2)
P = −i

g

3

∫ dqd

(2π)d
1

(p2 −m2)2(q2 −m2)
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The nonplanar one gains an oscillating term which at high mo-

mentum is convergent

G
(2)
NP = −i

g

6

∫ dqd

(2π)d
eipiθ

ijqj

(p2 −m2)2(q2 −m2)

The exponential in the nonplanar term makes the integral con-

vergent for high momentum, but in the infrared the divergence

comes back

lim
piθij→0

G
(2)
NP =

1

2
G

(2)
P
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The heuristic explanation for this phenomenon is that the pres-
ence of the nontrivial commutator [xi, xj]?M = iθij causes a gen-
eralization of Heisenberg’s uncertainty principle, so that the short
distance behaviour (high pi ) is linked to the large distance be-

haviour (low θijpj )

The Grönewold-Moyal product has not succeeded in eliminating
the divergences

One can ask if other products can solve the problem

It is known that of course fuzzy models, being finite, are free of ultravi-

olet, that the phenomenon persists in the nonrelativistic case (Grosse and

Wohlgeannt), it may be absent for timespace noncommutativity (Bahns).

Modifications of the action (Grosse Wulkenhaar, Rivasseau group) can also

substantially alter the ultraviolet behaviour
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Considering the Wick-Voros product also the situation is not

changed, the loop behaviour is the same

We have investigated the issue for a general translationally in-

variant associative star products

Defining the translation by a vector a by Ta(f)(x) = f(x+ a) ,

by translation invariant product we mean

Ta(f) ? Ta(g) = Ta(f ? g)

Which for Fourier transform becomes

T̃af(q) = eiapf̃(q)
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Such a product can be expressed, in integral form as

f ? g =
1

(2π)
d
2

∫
dpddqdeip·xf̃(q)g̃(p− q)eα(p,q)

Associativity and the requirement that the integral is a trace

impose severe constraints on α which has to satisfy

α(p, q) + α(q, r) = α(p, r) + α(p− r, q − r)

A product of this form can be commutative, in this case

α(p, q) = α(p, p− q)
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The quadratic action changes because∫
dxdf ? g =

∫
dxdg ? f 6=

∫
dxdfg

Therefore also the free propagator is altered

G̃2
0(p) =

e−α(0,p)

p2 −m2

The difference in the propagator can be absorbed in the S-matrix

if the product is coming from a twist.

In this talk we are not interested in the propagator and consider

only at the changes in the vertex
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The vertex is given by (using associativity)

V? = V0e
α(k1+k2,k1)+α(k3+k4,k3)+α(0,k1+k2)

The Green’s function for the planar cases is, after several trans-
formations using associativity:

G
(2)
P =

∫
dqd

e−α(0,p)

(p2 −m2)2(q2 −m2)

We see that with respect to the commutative case the only correction is in

the factor e−α(0,p) which is the correction of the free propagator.

The ultraviolet divergences of the loop are the same and therefore the short

distance physics is unaffected (in this respect) by the star product. The

momentum q in the internal loop appears in an unchanged form. The loop

correction is the same and will have the same properties of the commutative

theory.
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For the nonplanar case we obtain

G
(2)
NP =

∫
dqd

e−α(0,p)+ω(p,q)

(p2 −m2)2(q2 −m2)

with

ω(p, q) = α(p+ q, p)− α(p+ q, q)

For the Groönewold-Moyal product (for which α(0, p) = 0 ) we

have ω(p, q) = ipiθ
ijqj

Using the associativity properties one can show that

ω(p, q) = α(p, p− q)− α(p, q)

Which was the quantity that had to be zero in the case of com-

mutative product
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Therefore the nontrivial contribution to the loop is exactly the

failure of the product to be commutative

We have therefore shown that a commutative star product does

not change the ultraviolet behaviour of the theory.

This is non trivial, fudging with the (commutative) product the

vertex and the Green’s function are different. Only imposing

twisted symmetry one can probably showthat the S-matrix is

unchanged
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We can say more. Let us express the function ω with a multi-

index notation as

ω(p, q) =
∑
~i~j

a~i~j p
~iq
~j

with ~i = (i1, . . . id) and p
~i = p

i1
1 p

i2
2 . . . p

id
d
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Using identities coming from associativity and antisymmetry we

have ∑
~i~j

a~i~j q
~i(p

~j − (p− q)~j) = 0

This condition implies that the coefficient a must vanish except

in the case in which all of the ja ’s but one vanish. In this case

the antisymmetry of the a ’s ensures vanishing of the expres-

sion without further constraints. Using antisymmetry the same

reasoning can be done for the first multiindex

This shows that the term appearing in the one loop amplitude

for the nonplanar graphs is necessarily quadratic and therefore it

must be

ω(p, q) = iθijpiqj
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From associativity it is easy to prove that α cannot have lin-

ear terms, we can therefore express it as a series starting from

quadratic terms

α(p, q) = αijp
iqj + . . .

And therefore

ω(p, q) = iθijpiqj = αij(pi + qi)pj − αij(pi + qi)qj = αij(pi + qi)(pj − qj)

which means, calculating the product among the coordinates

[xi, xj]? = iθij
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In conclusion, the correction in the loop is only dependent on

the commutator among the coordinates

A classical result of Kontsevich says that two products, ? and

?′ with the same Poisson structure, i.e. the same commutator

among coordinates in the flat case, are equivalent. There exists

a map T with the property

T (f) ? T (g) = T (f ?′ g)

And this in turn means that the ultraviolet/infrared mixing (in the

translationally invariant case) is the same for all noncommutative

products (apart from the choice of θ )
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Conclusions

We have seen how the Ultraviolet/Infrared mixing is generic for

translationally invariant products and that it depends on an an-

tisymmetric matrix, the commutator of the coordinate

We have done this not for for products defined as formal series,

but operatively defined (for functions with a Fourier transform)

Equivalent products have the same Ultraviolet/Infrared mixing,

but can have different Green’s functions

It would be nice to connect this with Drinfeld twists (easy) and

to generalize to more general classes of products
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