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Disclaimer: This is not a �regular� talk. Little of nothing of

what I will describe has been contributed by me. It is rather a

contribution to the discussion.

I will review some attempts that mathematicians and physicists

are making to understand the structure of spacetime in the in-

�nitesimally small

The tool used to this e�ect is Noncommutative Geometry
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Let me start with a de�nition of Geometry

For which I can think of no higher authority than Wikipedia

Geometry (Greek γεωµετρια; geo = earth, metria = measure) is

a part of mathematics concerned with questions of size, shape,

and relative position of �gures and with properties of space.
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Geometry is at the hearth of several physical theories, including:

• Classical Mechanics The evolution of points in phase space

• Special Relativity The notion of event, a point in Minkowski

space

• Gravitation The theory of a curved spacetime

And then we have:

• String Theory Probably a whole seminar would not su�ce

just to enumerate the numerous uses of geometry in string

theory
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In all these theories the geometry used is the mostly usual one,

based on the concepts of points, lines etc.

When we move to quantum mechanics one important geometri-

cal object, phase space, undergoes a drastic transformation

Heisenberg's uncertainty principle ∆xi∆pj ≥ ~
2 forces us to aban-

don the concept of point in phase space.

What is usually done is to consider x and p to be operators on

an Hilbert space, and the uncertainty principle is a consequence

of the relation [xi, pj] = i~δi
j

Geometry is still an useful tool, for example the Kähler geometry of the space

of rays (Ashtekar-Schilling)
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Is it legitimate to expect the usual geometry to hold to all

scales?

There are several arguments which indicate physical reasons for

which it should not be so

Just to mention one (Doplicher-Fredenhagen-Roberts) which evocates a sim-

ilar reasoning for phase space:

In order to �measure� the position of an object, and hence the

�point� in space, one has use a very small probe, and quantum

mechanics forces us to have it very energetic, but on the other

side general relativity tells us that if too much energy is concen-

trated in a region a black hole is formed.

5



The scale at which this happens is of the order of Planck's length

`P =
√

G~
c3

= 1.6 10−33 cm.

This is the region in which the theory to use is Quantum Gravity.

Unfortunately a theory we do not yet have

In fact the two problems are related. A quantum gravity theory

needs spacetime to be a di�erent object from the one used in

classical geometry

For example in loop quantum gravity 3-space is directly quan-

tized and the geometry used there is certainly di�erent from the

classical one
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Also in string theory spacetime undergoes changes

It is not anymore a given starting point but for example its

dimensions emerge from the quantization of a conformal two-

dimensional �eld theory

Interacting strings are described by the insertion of vertex oper-

ators on the worldsheet

At ultra high energy the structure of spacetime is again a (still

somewhat mysterious) object in which ordinary spacetime has

undergone strong transformations (M theory)
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Noncommutative Geometry o�ers a systematic way to gener-

alizes spaces, with its roots in quantum mechanics

First of all commutative geometry: Hausdor� topological spaces

are on a one to one correspondence with commutative C∗ -
algebras (Gelfand-Najmark)

Given a space I can build a C∗ -algebra: the algebra of continuous
functions on it. Given an algebra I can reconstruct the space as

the space of characters.

The generalization is �simply� done considering noncommutative

C∗ -algebras
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For several years Connes and others have been writing a �dictio-

nary" to go beyond mere topology and translate all geometric

properties

For example the metric properties are encoded by a (generalized)

Dirac Operator

Thus the emphasis for the study of a geometrical structure

passes from the points to the �elds
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Historically the �rst appearance of Noncommutative Geometry in

a physics paper was Witten's Open String Field Theory (1986)

String �elds are seen as maps from a string con�guration in space into com-

plex numbers, with an enormous gauge symmetry (reparametrisation). After

gauge �xing the role of di�erential is played by the BRS operator

Then in the 90's there was Connes' approach to the Standard

Model
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In this case the space is only �almost� noncommutative, in the

sense that the noncommutative algebra describing space is Morita

equivalent to a commutative algebra

In fact the algebra is a tensor product A = C(R4)⊗AF , with

AF a �nite matrix algebra

The aim is not to predict the Lagrangian of standard model

(taken as input) but to �nd a noncommutative geometry which

describes the standard model

The model, especially in its last version (Chamseddine-Connes-

Marcolli) has some predictive power (mass of the Higgs), but it

is inherently classical, and once a Lagrangian is written, renor-

malization is performed in the usual way
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Impulse to study noncommutative spaces came again from Strings

Frohlich-Gawedski, Landi-FL-Szabo, Seiberg-Witten when it turned out that, in

some limit, the vertex operators of a string theory show the

behaviour given by noncommutative coordinates

In the spirit of what I said before one can threat a noncommuting

space deforming the algebra of functions with a Grönewold-Moyal

? product:

f ? g = fe
i
2θµν←−∂µ

−→
∂νg

In this way we encode the noncommutativity of spacetime in the

deformation of the algebra
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Noncommutative Field Theory: Deformation of a commutative

theory with the presence of a star product among the �elds. For

example

S =
∫

ddx∂µϕ ? ∂µϕ + m2ϕ ? ϕ +
g2

4!
ϕ ? ϕ ? ϕ ? ϕ

For the Grönewold-Moyal product the ? on the �rst two terms is redundant because∫
ddxf ? g =

∫
ddxfg

These theories are nonlocal, we have to abandon points because

we have the analogous of Heisenberg's uncertainty principle

What physics comes out of these theories (and which cosmol-

ogy?)
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The free theory is unchanged because of the integral property.

But the vertex gets a phase. For the example ϕ?4 :

V = (2π)4gδ4

 4∑
a=1

ka

 ∏
a<b

− i
2θµνkaµkbν

The vertex is not anymore invariant for exchange of the momenta

(only for cyclic permutations), and causes a di�erence between

planar and nonplanar diagrams
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A consequence of this is Ultraviolet/Infrared Mixing Minwalla-

Seiberg-Van Raamnsdong. The phenomenon for which some ultra-

violet divergences disappear, just to reappear as infrared diver-

gences
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If we take seriously the fact that the world is described by

this kind of noncommutative �eld theory which are the conse-

quences? How do we measure θµν , a quantity of the order of

`2P ?

At this level, and as suggested by string theory, θµν is a back-

ground quantity, which selects two directions in space (analog

of electric and magnetic �elds). Their presence breaks Lorentz

invariance and the noncommutativity will have left its imprinting

in the early universe, and its consequences are thereafter frozen

by in�ation

Direct accelerator measurements are more di�cult because the earth rotation

washes up the e�ect. But one can look for otherwise forbidden processes
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The problem is that the Moyal product is made for �at coor-

dinates. The construction of associative deformed products is

not simple (Kontsevich has won a �eld medal building them).

One cannot simply substitute, say, the partial derivatives in the

de�nition with covariant derivatives.

Nevertheless something has been done (Chu-Greene-Shiu, Brandem-

berger, FL-Mangano-Miele-Peloso).In our work we considered the �eld

theory of a �eld which causes in�ation to be deformed by a star

product
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We de�ned a curved star product to �rst order in θ = θ12 = 1/Λa2 ,

a being the usual scale factor of the universe and Λ−1 a non-

commutativity scale. Notice that the fact that θ is a tensor

chooses a direction (12 in our case)

With this choice and a Moyal product de�ned with covariant

derivatives nonassociativity is fourth order e�ect, and one can

study the corrections to the in�aton action.
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The corrections are such that the background evolves in the

usual way, but the �uctuations change. Just for completeness

let me �ash the extra terms:

δSV = −
m2

16

∫
d4x a3 1

Λ4

(
ȧ

a

)2 (
∂1φ∂1φ + ∂2φ∂2φ

)
, (1)

δSK =
1

32

∫
d4x
√
−g ΘµνΘρσ (DρDτφ) ([Dµ, Dν]DσDτφ)

=
1

16

∫
d4x a3 1

Λ4

(
ȧ

a

)2
[
∂m∂0φ∂m∂0φ + ∂m∂iφ∂m∂iφ−

− 2
ȧ

a
∂mφ∂0∂mφ +

(
ȧ

a

)2
∂mφ∂mφ

]
,(2)

with m = 1,2.
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These terms have as a consequence a quadrupole contribution

to the CMB (while gaussianity is preserved)

It is not easy however to distinguish predictions coming from

these kind of theories from other breakings of Lorentz invariance

Since a noncommutative product is nonlocal, can this nonlocality

have consequences in the early universe, give a di�erent solution

to the horizon problem for example?
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But, given that we want to use noncommutativity of spacetime,

are we sure we are using the right one? And what about the

breaking of Lorentz symmetry in a fundamental theory? Notice

that in the original Doplicher et al. paper θ is a central operator, and Lorentz is not broken

A deformation of spacetime may require a deformation of sym-

metries. Quantum Groups and Hopf Algebras
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There is a Hopf algebra which is causing great interest:

θ -Poincaré

Consider the symmetry to be a twisted quantum symmetry (Wess

and the Münich group: Aschieri, Blohmann, Dimitrievi¢, Meyer, Schupp,

Chaichian-Kulish-Nishijima-Tureanu, Oeckl, Majid, Drinfeld . . . )

Consider the usual action of the Lie algebra L of di�erential

operators on the algebra A of functions with the usual commu-

tative product

The usual product can be seen as a map from A⊗A → A
m0(f ⊗ g) = fg

pointwise multiplication
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The Leibnitz rule imposes a coalgebra structure of the Lie alge-

bra:

`(fg) = `(f)g + f`(g) = m0(∆(L)(f ⊗ g))

where ` is a generic �rst order di�erential operator
∆ : L→ L⊗ L

∆(`) = `⊗ 1 + 1⊗ `

The coproduct tells how to put together representations, and

how an operator acts on two copies of the module.
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Consider the Moyal product as follows

(f ? g)(x) = m0[F−1f ⊗ g] ≡ mθ[f ⊗ g]

where m0(f ⊗ g) = fg

is the ordinary product and

F = e−
i
2θµν∂xµ⊗∂yν = e−

i
2θ(∂x0⊗∂y1−∂x1⊗∂y0)

is called the twist.

The Noncommutative plane is obtained twisting the tensor prod-

uct, and using the ordinary product.
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We have to then revise the Leibnitz rule:

∂µ(f ? g) = mθ∆θ(f ⊗ g) = m0∆(∂mu)(F−1(f ⊗ g))

where

∆θ = F∆F−1

The algebra structure remains unchanged, what changes is the

coalgebra structure, that is the way to �put together represen-

tations�.

counit and antipode remain unchanged.
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We have this deformed the coalgebra structure of the Poincaré

Lie algebra. In particular:

The Lie algebra structure (commutators) is not changed. What

changes is the coalgebra, at the level of the Lorentz group

∆F(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ

∆F(Mµν) = Mµν ⊗ 1 + 1⊗Mµν −
1

2
θαβ

(
(ηαµPν − ηανPµ)⊗ Pβ + Pβ

(
ηβµPν − ηβνPµ

))
The fact that the algebra is the same means that we can still use

the casimirs and the representations of the usual algebra, with

thus concepts of mass, spin etc.
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The twisted framework for noncommutative �eld theory is still

under investigation, and is not free from controversies

We have changed the tensor product, and therefore one should

twist all products in an appropriate way

Nevertheless there are already attempts at prediction, both in

the gravitational framework, in the form of a deformed Einstein-

Hilbert action (Wess et al.), or in the changes of statistics due

to the twist.

But we are probably still lacking a �canonical� procedure to un-

derstand the twist
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Another possibility could be κ-Minkowki. This is the homogenous

space of the κ-Poincaré quantum group, and it is characterized

by the commutation relations

[xi, x0] = iλxi, [xi, xj] = 0

The commutation relations for κ-Poincaré are:
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[Pµ, Pν] = 0

[Mi, Pj] = iεijkPk

[Mi, P0] = 0

[Ni, Pj] = −iδij

(
1

2λ
(1− e2λP0) +

λ

2
P2

)
+ iλPiPj

[Ni, P0] = iPi

[Mi, Mj] = iεijkMk

[Mi, Nj] = iεijkNk

[Ni, Nj] = −iεijkMk
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All these commutation relations become the standard ones for

λ → 0. The bicrossproduct basis is peculiar as κ-Poincaré acts

covariantly on a space that is necessarily deformed and noncom-

mutative. This is a consequence of the non cocommutativity of

the coproduct which, always in the bicrossproduct basis, reads:

∆P0 = P0 ⊗ 1 + 1⊗ P0

∆Mi = Mi ⊗ 1 + 1⊗Mi

∆Pi = Pi ⊗ 1 + eλP0 ⊗ Pi

∆Ni = Ni ⊗ 1 + e+λP0 ⊗Ni + λεijkPj ⊗Mk

The Casimir of this quantum group provide a deformation of the

Energy-Momentum dispersion relation and this could be used

to explain γ -ray bursts (Amelino-Camelia). The problem is that,

being the commutation relations nonlinear, nonlinear changes of

coordinates are allowed, and therefore these dispersion relations

become basis-dependent.
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Is it possible to draw conclusions?

My personal conclusion is that at the Planck scale there should

be a noncommutative structure, but we may not have gotten yet

the right one

Noncommutative geometry is actually more a tool than a the-

ory, and it should probably complement a more general theory

(probably some version of strings or loop quantum gravity

Fortunately we can expect some input from experiments and

observations: LHC, Planck, cosmic rays
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