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The starting point for a large part of what is now called non-

commutative geometry is the commutator

xµ ? xν − xν ? xµ = iθµν

This is usually implemented via the Moyal product often written

in the asymptotic form:

f(x) ?Mg(x) = f(x)e
i
2θij←−∂i

−→
∂jg(x)

It is a noncommutative, associative product introduced originally

in quantum mechanics. It comes from a Weyl map between

functions and operators (which enables better and more solid

integral definitions of the product).
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The commutation relation has been introduced in the spacetime

context by Doplicher, Fredenhagen and Roberts. It became fa-

mous when it emerged in the product between vertex operators

of strings.

The Moyal product is not the only product which gives the above

commutation relation

In this seminar I will discuss an alternative product, and compare

the field theories built with it and with the Moyal product
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In reality I have also an hidden agenda: symmetries

The issue of symmetries of physical theories is an important one,

and the presence of θij breaks Lorentz invariance

This invariance can be however recuperated in a quantum ver-

sion, as a noncocommutative Hopf algebra

But the proper way to implement this quantum symmetry and its

“physical” consequences is not completely immediate. We have

experience with the usual, commutative theory and its usual,

cocommutative symmetries.
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The construction of a theory in this different context should start form a

recognition of the physical objects, and their operational meaning. Then the

theory is developed, often along more than one direction, confrontation with

experiment indicating the correct way to proceed in ambiguous cases

The problem is that we do not have the help of experiment,

and therefore the resolution of some ambiguities is difficult to

establish.

In this respect the comparison of the theories may (and will) help

in the understanding of a canonical procedure for the implemen-

tation of this kind of symmetries
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In the following I will be in 2 + 1 dimensions with only spatial noncommutativity θij = θεij

Introduce the Wick-Voros product:

z± =
x1 ± ix2
√

2

∂± = ∂
∂z±

= 1√
2

(
∂

∂x1 ∓ i ∂
∂x2

)
f ?Vg =

∑
n

(
θn

n!

)
∂n
+f∂n

−g = feθ
←−
∂+
−→
∂−g
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This product still gives the usual commutation relation

xi ?Vxj − xj ?Vxi = iθij

it comes from a variation of the Weyl map:

Ω̂V (f) =
1

2π

∫
d2ηf̃(η, η̄)eθηa†e−θη̄a

so that we can define it as

f ?Vg = Ω−1
V

(
Ω̂V (f)Ω̂V (g)

)

The product is also called normal ordered product because it

associates harmonic oscillator creation and annihilation operators

to z± with Ω̂(f(z+, z−) =: f(a†, a) :
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We studied a ϕ?4 field theory with the Wick-Voros product and

compared it with the one with the Moyal product

S0 =
∫

dtL0 =
∫

dtd2z L0 =
∫

dtd2z
1

2

(
∂µϕ ? ∂µϕ−m2ϕ ? ϕ

)
S = S0 +

g

4!

∫
dtd2z ϕ ? ϕ ? ϕ ? ϕ

Where ? is either product
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Note a crucial difference between the Moyal and Wick-Voros

products:∫
d2zf ?Vg =

∫
d2z g ?Vf 6=

∫
d2z fg =

∫
d2zf ?Mg

This means that also the free theory will be different from the

undeformed case. The two free propagators are

G
(2)
0M

(p) =
1

p2 −m2

G
(2)
0V

(p) =
e−

θ
2|~p|

2

p2 −m2
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Similarly it is possible to calculate vertex and tree level four

points Green’s function, generalising Filk’s work:

G
(4)
0 = −ig(2π)3

e
∑

a≤b ka•kb∏4
a=1 (k2

a −m2)
δ

 4∑
a=1

ka


where

ka • kb =


− i

2θijkaikbj Moyal

−θka−kb+ = −1
2

(
θkaikb

i + iθijkaikbj

)
Wick-Voros

The Moyal case has just a phase, the Wick one has also a real

part in the exponent
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The two products however are equivalent in the following sense:

there is an invertible map T = e
θ
4∇

2
with the property:

T (f ?Mg) = T (f) ?VT (g)

In fact they correspond to two equivalent “quantization” schemes
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I can take two points of view;

I know nothing of the structure of spacetime, noncommutative
geometry and all that. I am in the presence of two different
actions, slightly unusual because they have an infinite number of
derivatives, but under control.

Quantize spacetime, i.e. map functions to operators. Then to
(second) quantize the action, I could forget about the underlying
space, and perform my calculations at the operator level with a
path integral. Nevertheless it is convenient to map the operators
to functions with a star product, and quantize its fields in a
conventional way. In this way I keep separated the quantization
of spacetime from the quantization of fields.

In this view I expect the same “physics” with the equivalent
products.
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Calculate the four point amplitude at one loop for the planar

and nonplanar diagrams:

��
��

k1

q
k2 ��

��
��
��
��
��
��
��qqqqk1 k2

G
(2)
P = g

1

2

∫ d3q

(2π)3
ep•p

(p2 −m2)2(q2 −m2)

G
(2)
NP = g

1

2

∫ d3q

(2π)3
ep•p+p•q−q•p

(p2 −m2)2(q2 −m2)

Notice that p • p = 0 for the Moyal case, or −θ|~p|2 for Wick-

Voros, while p • q − q • p = ipiθ
ijqj in both cases, but the two

Green’s functions are not the same because of the p • p term.
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The phase ipiθ
ijqj is the one responsible for the ultraviolet/infrared

mixing because the nonpalanar diagram is convergent at high

momenta, but it develops infrared divergences.

Since the depedence on the internal momentum q is the same

in both cases, the ultraviolet/infrared mixing is unchanged

An heuristic way to see the mixing is as a consequence of a space

uncertainty principle, which depends only on the commutation

relations and is unchanged in this case.
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The four points one-loop Green’s functions correspond to the planar and the

three nonplanar cases

1 1 1
2 2 23 3

4 4
q q 3

4

For the planar case the result is

G
(4)
P = (2π)6g2

∫
dq

e
∑

a≤b ka•kb δ
(∑4

a=1 ka

)
(q2 −m2)((k1 + k2 − q)2 −m2)

∏4
a=1 (k2

a −m2)
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While for the nonplanar case there is an extra term

G
(4)
NPa

= (2π)6
∫

dq
e
∑

a≤b ka•kb+Ea δ
(∑4

a=1 ka

)
(q2 −m2)((k1 + k2 − q)2 −m2)

∏4
a=1 (k2

a −m2)

with

E1 = q • k1 − k1 • q = i~q ∧ ~k1

E2 = k2 • q − q • k2 + k3 • q − q • k3 = i(~k2 ∧ ~q + ~k3 ∧ ~q)

E3 = k1 • q − q • k1 + k2 • q − q • k2 = i(~k1 ∧ ~q + ~k2 ∧ ~q)

Notice that these extra terms are the same in both cases
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The phases in the nonplanar diagrams are the same in the two

cases, but the exponent e
∑

a≤b ka•kb is different

Again the ultraviolet/infrared is the same for Moyal and Wick-
Voros

For the Moyal case the exponent is just a phase, but for Wick-
Voros there is also a real part θka · kb , something like a momen-
tum dependent coupling constant

Curiously this term is large or small depending on the sign of
theta

At any rate the Green’s function in the two cases are different,
contrary to our expectation that the two theories should describe
the same “physics”
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However Green’s functions are not directly measurable, so let us

go one step up and discuss the S-matrix.

The issue of the determination of an S-matrix in noncommuta-

tive field theory is not a settled one, there are several issues yet

to be clarified, mainly in relation to the asymptotic states. And

we have no experiments to guide us...

The scope of the following discussion is to use the two products

one against the other to find a procedure which gives the same

results for both. This is not going to solve all problems that the

theory might have. We only hope to clarify the role of deformed

symmetries
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We have to discuss Poincaré symmetry. In the case of both

theories the symmetry is a deformed symmetry, a quantum group

(Hopf algebra) obtained by a Drinfeld twist

I will be sketchy in the description of twisted theories which have been intro-

duced in this context by the Munich (Aschieri, Blohmann, Dimitrijevic, Meyer,

Schupp and Wess) and Helsinki (Chaichian, Kulish, Nishijima and Tureanu)

groups, and discussed by other speakers at this meeting

Consider the twist, an operator which acts on the tensor product

of function. For the two cases we have:

F−1
?M

= e
i
2θij∂i⊗∂j

F−1
?V

= eθ∂+⊗∂−
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We take the point of view (Aschieri) that we have to twist with

the above operator, in its proper representation, all products

encountered

Given a generic product from the product of two spaces into a third

µ : X × Y −→ Z

we associate a deformed product

µ? : µ ◦ F−1(X ⊗ Y ) −→ Z

In particular when X = Y = Z = C(M) , the algebra of functions

on a manifold, the usual pointwise product is deformed in the

appropriate ? product
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We set on calculating the S-matrix at one loop for the four points amplitude

twisting all products we encountered

Step 0: define the free asymptotic state

|k〉 = a
†
k |0〉

where

a
†
k = −

i√
(2π)22ωk

∫
d2xe−ik·x ↔∂0 ϕin(x)

a and a† are functionals of the fields, and therefore, using the
twist, we can define a deformed product for them:

a(k) ? a(k′) = F̃−1a(k)a(k′) = ek•k′a(k)a(k′)

etc.
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Step 1 Two particles state:

F̃−1
?M
|ka〉 ⊗ |kb〉 = |ka, kb〉?M

= e
− i

2θijkai⊗kbj |ka〉 ⊗ |kb〉

F̃−1
?V
|ka〉 ⊗ |kb〉 = |ka, kb〉?V

= e
θka−⊗kb+ |ka〉 ⊗ |kb〉

Which can be expressed in an unified way as:

|ka, kb〉? = a
†
ka

? a
†
kb
|0〉
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Step 2 Inner product among one particle states

Also the inner product should be twisted giving

〈
·

?∣∣∣ ·〉 : |k〉 ⊗
∣∣∣k′〉 −→ 〈·| ·〉 ◦ F−1 : |k〉 ⊗

∣∣∣k′〉 = F̃−1(k, k′) 〈k| k′
〉

= 〈0| ak ? a
†
k′ |0〉
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Step 3 Inner product among two-particle states

To act on two particle states we have to put together repre-

sentations. For Hopf algebras this is done via the coproduct, a

structure of Hopf algebras:

∆?(u)(f ⊗ g) = (1⊗ u +R−1(u⊗ 1))(f ⊗ g)

In this particular case, because translations commute the twist

of the coproduct is unimportant ∆0 = ∆?
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We obtain〈
k1k2

?∣∣∣ k3k4

〉
= 〈·| ·〉 ◦∆?(F−1)( |k1k2〉 ⊗ |k3k4〉)

where by ∆?(F−1) is defined by ∆(∂ ⊗ ∂) = ∆(∂)⊗∆(∂)

〈
k1, k2

?M∣∣∣ k3, k4

〉
= e

i
2θij(k1i

+k2i
)(k3j

+k4j
) 〈k1, k2| k3, k4〉

〈
k1, k2

?V∣∣∣ k3, k4

〉
= eθ(k1−+k2−)(k3++k4−) 〈k1, k2| k3, k4〉
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The expression for the inner product can be concisely written as:

?

〈
k1, k2

?∣∣∣ k3, k4

〉
?

= 〈0| ak1
? ak2

? a
†
k3

? a
†
k4
|0〉

= e−
∑

a<b ka•kb 〈k1, k2| k3, k4〉

Which is a rather “natural” expression
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We are now ready to calculate the S-matrix two particles elastic

scattering (to one loop)

Sfi =
in?

〈
f

?∣∣∣ i

〉
?out

=
in?

〈
f

?∣∣∣ S
?∣∣∣ i

〉
?in
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The one-particle asymptotic state is

|k〉in = N?(k)a
†
k |0〉in = −N?(k)

i√
(2π)22ωk

∫
d2xe−ik·x ↔∂0 ϕin(x) |0〉in

with N?(k) a normalization factor to be determined for the Moyal and Wick-

Voros cases

We assume

lim
x0→±∞

〈f |ϕ(x)|i〉 = Z1/2〈f |ϕout
in

(x)|i〉

Z a renormalization factor
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We obtain:

Sfi =
in?

〈
k1k2

?∣∣∣ k3k4

〉
out?

= disconnected

+N̄?(k1)N̄?(k2)N?(k3)N?(k4)(iZ
−1/2)2e−

∑
a<b ka•kb

×
∫ Πa d2xa√

(2π)22ωka

e−ikaxa
(∂2

µ + m2)aG(x1, x2, x3, x4)

where G(x1, x2, x3, x4) is the four-point Green’s function.
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to fix the normalization of the asymptotic states compute the scattering

amplitude for one particle going into one particle, at zeroth order. Up to the

undeformed normalization factors N(pa) , this has to give a delta function:

N∗(k)N(p)δ2(k − p) = N∗?(k)N?(p)
in?

〈
k

?∣∣∣ p

〉
out?

= N∗?(k)N?(p)e
−k•p

in 〈k| p〉out = N∗?(k)N?(p)e
−k•pδ2(k − p)

from which we obtain

N?M(p) = N(p)

N?V(p) = e−
θ
4|~p|

2
N(p)
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For the planar case we have

Sfi?P
(k1, .., k4) = N̄(k1)N̄(k2)N(k3)N(k4)Πae

θ
4|~ka|2

e−
∑

a<b ka•kb

∫
Πa

d2xa√
(2π)22ωka

e−ikaxa
∫

Πa
d2pa√

(2π)22ωpa

eipaxa
(−p2

a + m2)

∫
dq

e
∑

a≤b pa•pb

(q2 −m2)((p1 + k2 − q)2 −m2)
∏4

a=1 (p2
a −m2)

δ

 4∑
a=1

pa



The propagators of the external legs and the exponent cancel in the x

integration so that we are left with the usual undeformed expression

Sfi?P
(k1, .., k4) = Sfi(k1, .., k4)
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The nonplanar case is different form the undeformed case:

Sfi?NP
(k1, .., k4) = N̄(k1)N̄(k2)N(k3)N(k4)Πae

θ
4|~ka|2

e−
∑

a<b ka•kb

∫
Πa

d2xa√
(2π)22ωka

e−ikaxa
∫

Πa
d2pa√

(2π)22ωpa

eipaxa
(−p2

a + m2)

∫
dq

e
∑

a≤b pa•pb+Ea

(q2 −m2)((p1 + k2 − q)2 −m2)
∏4

a=1 (p2
a −m2)

δ

 4∑
a=1

pa


After integrating the previous cancellations still hold, but but we
are left with the exponential of Ea which doesn’t simplify.

It is an imaginary phase, and it has the same expression in the
Moyal and Wick-Voros case. It depends on the q variable, there-
fore it gets integrated and modifies the IR and UV behaviour of
the loop: this is the correction responsible for the UV/IR mixing
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Conclusions

We have investigated two different but equivalent noncommu-

tative ? product. With the prejudice that they should give the

same “physical predictions”

We have found that they give different Green’s functions and

free propagators

We have also found that if the calculations of the S-matrix are made in a

controlled way, deforming all products, then the result is indeed the same for

the two noncommutative theories, but it is different from the undeformed

case. To achieve this we had to twist the asymptotic states, the way we

put together representations, the product among creation and annihilation

operators, the inner product,and even the normalization, all not in a random

way, but following a precise procedure.
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We can quote the Duca di Salina in Tomasi di Lampedusa’s

novel Il Gattopardo:

Or Luchino Visconti’s movie The Leopard with Burt Lancaster

Change everything so that nothing changes
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