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Let me start with a de�nition of Geometry

For which I can think of no higher authority than Wikipedia

Geometry (Greek γεωµετρια; geo = earth, metria = measure) is

a part of mathematics concerned with questions of size, shape,

and relative position of �gures and with properties of space.

And this geometry has served us quite well for a few millennia

In this talk I will give a non-technical, non-rigorous, review of the e�orts that

physicist have doing to use a generalization of the usual geometrical objects.

I will not go into any detail and will not go into any depth.
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The need for a noncommutative geometry

Classical mechanics can be seen as the study of the geometry of

phase space (or position momentum space). Given an initial po-

sition of a system, the classical dynamics describes its evolution.

We can have the case of constrained mechanics, the in�nite

dimensional case, and also the relativistic case

Relativity is a big change, from space we go to spacetime, but

we still have points (events).

Even with general relativity, and the curvature of spacetime, the

underlying space is still has a classical geometry.

All this changes dramatically with quantum mechanics
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A quick way to see that in quantum mechanics the concept of

point (of phase space) is not valid is given by the Heisenberg

Microscope

The idea is that to �see� something small, of size of the order of ∆x , we

have to send a �small� photon, that is a photon with a small wavelength λ ,

but a small wavelength means a large momentum p = h/λ . In the collision

there will a transfer of momentum, so that we can capture the photon. The

amount of momentum transferred is uncertain.

In quantum mechanics a point in phase space is an untenable

concept because of the Heisenberg uncertainty principle:

∆x∆p ≥
~
2
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We know what has happened. The observables, which in classical

mechanics are commutative functions on the phase space, have

become noncommutative operators on the Hilbert space of wave

functions

A (pure) state in classical mechanics is a point of phase space,

an observable is something which gives a real number for each

state (the value of the function on the point)

A (pure) state in quantum mechanics is a vector on the Hilbert

space, an observable is something which gives a real number for

each state (the expectation value of the operator)

The di�erence is noncommutativity
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The information on the (classical) phase space is encoded in the

(commutative) algebra of observables, i.e. in the functions on

the space

There is a theorem (Gelfand-Naimark) which demonstrates a

complete equivalence between commutative C∗ -algebras and

Hausdor� topological spaces

A Hausdor� space is one for which points are separable. A C∗ -algebra is an

associative algebra with a norm and a complex conjugation
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Given an Hausdor� space it is always possible to construct a

commutative C∗ -algebra: continuous complex valued functions.

Remarkably the converse is also true, an arbitrary C∗ -algebra
is always the algebra of continuous complex valued functions on

some Hausdor� space. The points of the space are the pure

states of the algebra, the topology is given by convergence.

For a commutative algebra pure states, irreducible one-dimensional repre-

sentations and maximal ideals all coincide, and the same topology can be

constructed from either of these sets.
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This duality has led some people, starting with Von Neumann,

but principally Alain Connes, to an attempt to transcribe all

properties of ordinary spaces in algebraic terms

Thus the emphasis in the description of geometry switches from

points to �elds

The topology is encoded by the algebra, which can always be rep-

resented as operators on some Hilbert space (loosely speaking,

every algebra is a matrix algebra, possibly in�nite dimensional)

The metric structure is encoded in a (generalized) Dirac oper-

ator D , which �knows� about the metric, and is used to build

the di�erential calculus (forms). Integrals become traces of op-

erators with the inverse of D playing the role of the measure
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What if the algebra is noncommutative?

Noncommutative Spaces

If the algebra is noncommutative the identi�cation of points with

pure states (or irreducible representations) fail. Often the Haus-

dor� topology gives a single points

Nevertheless the geometry information about the space is en-

coded in the noncommutative algebra, and possibly in some fur-

ther objects like the D operator above

If we succeed in transcribing objects of ordinary geometry in

algebraic terms, then the generalization is �simply� done just

assuming that the algebra is noncommutative
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Quantum phase space is a noncommutative space, but what are

its relations with the classical space?, With its structures?

Deformation of spaces

Take the algebra of classical observables, functions multiplied

with the commutative product, and introduce a deformed (Gronewöld-

Moyal) product:

(f ? g)(x, p) = fe
i~
2
←−
∂x
−→
∂p−
←−
∂p
−→
∂xg = fg +

i~
2

(∂xf∂pg − ∂pf∂xg) + O(~2)

So that to �rst order in ~

f ? g − g ? f = i~{f, g}

The commutator is a deformation of the Poisson bracket, in the

limit ~→ 0 one �nds again the classical structure
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The noncommutative structure of spacetime

So far we have been discussing the noncommutativity of phase

space. In quantum mechanics however con�guration space is

still an ordinary space

Is it legitimate to expect the usual geometry to hold to all

scales?

There are several arguments which indicate physical reasons for

which it should not be so
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Just to mention one (Doplicher-Fredenhagen-Roberts) which is a variation of

the Heisenberg microscope, at the same caricature level I used before:

In order to �measure� the position of an object, and hence the

�point� in space, one has use a very small probe, and quantum

mechanics forces us to have it very energetic, but on the other

side general relativity tells us that if too much energy is concen-

trated in a region a black hole is formed.

The scale at which this happens is of the order of Planck's length

`P =
√

G~
c3

= 1.6 10−33 cm.
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This is the region in which the theory to use is Quantum Gravity.

Unfortunately a theory we do not yet have

In fact the two problems are related. A quantum gravity theory

needs spacetime to be a di�erent object from the one used in

classical geometry

For example in loop quantum gravity 3-space is directly quantized

and the geometry used there (spin networks) is certainly di�erent

from the classical one
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Also in string theory spacetime undergoes changes

It is not anymore a given starting point but for example its

dimensions emerge from the quantization of a conformal two-

dimensional �eld theory

Interacting strings are described by the insertion of vertex oper-

ators on the worldsheet

At ultra high energy the structure of spacetime is again a (still

somewhat mysterious) object in which ordinary spacetime has

undergone strong transformations (M theory)
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These considerations have led several people to consider space-

time as a noncommutative space, and to use the tool of non-

commutative geometry

Historically the �rst appearance of Noncommutative Geometry in

a physics paper was Witten's Open String Field Theory (1986)

String �elds are seen as maps from a string con�guration in space into com-

plex numbers, with an enormous gauge symmetry (reparametrisation). After

gauge �xing the role of di�erential is played by the BRS operator

Then in the 90's there was Connes' approach to the Standard

Model
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Connes' approach to the standard model

The project is to transcribe electrodynamics on an ordinary man-

ifold using algebraic concepts: The algebra of functions, the

Dirac operator, the Hilbert space and some added operators

(Chirality and charge conjugation). One can then write the ac-

tion in purely algebraic terms.

Then the machinery can be applied to noncommutative space,

or in general to other algebras.

Remarkably, if one applies this to the algebra of functions valued

in diagonal 2× 2 matrices one �nds the Lagrangian of the Higgs

breaking of a U(1)× U(1)→ U(1) theory, in which the Higgs

is the �vector� boson corresponding to the internal degree of

freedom.
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In this case the space is only �almost� noncommutative, in the sense that

there still is an underlying spacetime, the noncommutative algebra describing

space is said to be Morita equivalent to a commutative algebra

For the full standard the algebra is a tensor product A = C(R4)⊗AF , with

AF a �nite matrix algebra of 3× 3 matrices, quaternions (which are matrices

of the kind aµσµ ) and complex numbers corresponding to SU(3), SU(2) and

U(1) respectively.

The information about mass and Cabibbo mixing are encoded in the D

operator

The aim is not to predict the Lagrangian of standard model (taken as input)

but to �nd a noncommutative geometry which describes the standard model

The model, especially in its last version (Chamseddine-Connes-Marcolli) has

some predictive power (mass of the Higgs), but it is inherently classical, and

once a Lagrangian is written, renormalization is performed in the usual way
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Impulse to study noncommutative spaces in physics came again

from Strings Frohlich-Gawedski, Landi-FL-Szabo, Seiberg-Witten when it turned

out that, in some limit, the vertex operators of a string theory

show the behaviour given by noncommutative coordinates

In the spirit of what I said before one can threat a noncommuting

space deforming the algebra of functions with a ? product similar

to the one introduced in quantum mechanics, with ~ replaced by

an antisymmetric matrix θ :

f ? g = fe
i
2θµν←−∂µ

−→
∂νg

In this way we encode the noncommutativity of spacetime in the

deformation of the algebra
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Noncommutative Field Theory

Deform of a commutative theory with the presence of a star

product among the �elds. For example

S =
∫

ddx∂µϕ ? ∂µϕ + m2ϕ ? ϕ +
g2

4!
ϕ ? ϕ ? ϕ ? ϕ

For the Grönewold-Moyal product the ? on the �rst two terms is redundant because∫
ddxf ? g =

∫
ddxfg

What physics comes out of these theories?
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The free theory is unchanged because of the integral property.

But the vertex gets a phase. For the example ϕ?4 :

V = (2π)4gδ4

 4∑
a=1

ka

 ∏
a<b

− i
2θµνkaµkbν

The vertex is not anymore invariant for exchange of the momenta

(only for cyclic permutations), and causes a di�erence between

planar and nonplanar diagrams

��
��

k1

q
k2 ��

��
��
��
��
��
��
��qqqqk1 k2

A consequence of this is Ultraviolet/Infrared Mixing Minwalla-

Seiberg-Van Raamnsdong. The phenomenon for which some ultra-

violet divergences disappear, just to reappear as infrared diver-

gences
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If we take seriously the fact that the world is described by

this kind of noncommutative �eld theory which are the conse-

quences? How do we measure θµν , a quantity of the order of

`2P ?

At this level, and as suggested by string theory, θµν is a back-

ground quantity, which selects two directions in space (analog

of electric and magnetic �elds). Their presence breaks Lorentz

invariance and the noncommutativity will have left its imprinting

in the early universe, and its consequences are thereafter frozen

by in�ation

Direct accelerator measurements are more di�cult because the earth rotation

washes up the e�ect. But one can look for otherwise forbidden processes
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The problem is that the Moyal product is made for �at coor-

dinates. The construction of associative deformed products is

not simple (Kontsevich has won a �eld medal building them).

One cannot simply substitute, say, the partial derivatives in the

de�nition with covariant derivatives.

Nevertheless something has been done (Chu-Greene-Shiu, Brandem-

berger, FL-Mangano-Miele-Peloso). In our work we considered the

�eld theory of a �eld which causes in�ation to be deformed by

a star product

It is not easy however to distinguish predictions coming from

these kind of theories from other breakings of Lorentz invariance
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But, given that we want to use noncommutativity of spacetime,

are we sure we are using the right one? And what about the

breaking of Lorentz symmetry in a fundamental theory?

A deformation of spacetime may require a deformation of sym-

metries. Quantum Groups and Hopf Algebras
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A Lie group is a manifold, and therefore it is a topological space, described
by its commutative algebra of functions. It has however added structure:
it makes sense to multiply �points�, there is an identity, an inverse of every
point.

This structure is encoded in the algebra of functions as a coproduct, which
from a function of one variable gives a function of two variables:

∆(f)(g1, g2) = f(g1g2)

The Lie algebra level (in�nitesimal transformations, or di�erential operators),
the coproduct in the group induces a coproduct in the algebra

∆(L) = L⊗ I + I ⊗ L

Which is the Leibnitz rule when L , element of the Lie algebra is seen as
a di�erential operator. This (and other structures) gives the structure of a
Hopf algebra

A quantum group is what we obtain when the algebra of functions on the
group becomes noncommutative. It is then necessary to deform commutation
relations and/or coproducts.
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There is a Hopf algebra which is causing great interest:

θ -Poincaré

Consider the symmetry to be a twisted quantum symmetry (Wess

and the Münich group: Aschieri, Blohmann, Dimitrievi¢, Meyer, Schupp,

Chaichian-Kulish-Nishijima-Tureanu, Oeckl, Majid, Drinfeld . . . )

Consider the usual action of the Lie algebra L of di�erential

operators on the algebra A of functions with the usual commu-

tative product

The usual product can be seen as a map from A⊗A → A
m0(f ⊗ g) = fg

with pointwise multiplication
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The Leibnitz rule imposes a coalgebra structure of the Lie alge-

bra:

`(fg) = `(f)g + f`(g) = m0(∆(L)(f ⊗ g))

where ` is a generic �rst order di�erential operator
∆ : L→ L⊗ L

∆(`) = `⊗ 1 + 1⊗ `

The coproduct tells how to put together representations, and

how an operator acts on two copies of the module.
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Consider the Moyal product as follows

(f ? g)(x) = m0[F−1f ⊗ g] ≡ mθ[f ⊗ g]

where m0(f ⊗ g) = fg

is the ordinary product and

F = e−
i
2θµν∂xµ⊗∂yν = e−

i
2θ(∂x0⊗∂y1−∂x1⊗∂y0)

is called the twist.

The noncommutative product is obtained �rst twisting the tensor

product, and then using the ordinary product.
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With the twist we have to revise the Leibnitz rule:

∂µ(f ? g) = mθ∆θ(f ⊗ g) = m0∆(∂mu)(F−1(f ⊗ g))

where

∆θ = F∆F−1

The algebra structure remains unchanged, what changes is the

coalgebra structure, that is the way to �put together represen-

tations�.

counit and antipode remain unchanged.
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We have this deformed the coalgebra structure of the Poincaré

Lie algebra. In particular:

The Lie algebra structure (commutators) is not changed. What

changes is the coalgebra, at the level of the Lorentz group

∆F(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ

∆F(Mµν) = Mµν ⊗ 1 + 1⊗Mµν −
1

2
θαβ

(
(ηαµPν − ηανPµ)⊗ Pβ + Pβ

(
ηβµPν − ηβνPµ

))
The fact that the algebra is the same means that we can still use

the casimirs and the representations of the usual algebra, with

thus concepts of mass, spin etc.
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The twisted framework for noncommutative �eld theory is still

under investigation, and is not free from controversies

We have changed the tensor product, and therefore one should

twist all products in an appropriate way

Nevertheless there are already attempts at prediction, both in

the gravitational framework, in the form of a deformed Einstein-

Hilbert action (Wess et al.), or in the changes of statistics due

to the twist.

But we are probably still lacking a �canonical� procedure to un-

derstand the twist
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Another possibility could be κ-Minkowki. This is the homogenous

space of the κ-Poincaré quantum group, and it is characterized

by the commutation relations

[xi, x0] = iλxi, [xi, xj] = 0

The commutation relations for κ-Poincaré are:
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[Pµ, Pν] = 0

[Mi, Pj] = iεijkPk

[Mi, P0] = 0

[Ni, Pj] = −iδij

(
1

2λ
(1− e2λP0) +

λ

2
P2

)
+ iλPiPj

[Ni, P0] = iPi

[Mi, Mj] = iεijkMk

[Mi, Nj] = iεijkNk

[Ni, Nj] = −iεijkMk
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All these commutation relations become the standard ones for

λ → 0. The bicrossproduct basis is peculiar as κ-Poincaré acts

covariantly on a space that is necessarily deformed and noncom-

mutative. This is a consequence of the non cocommutativity of

the coproduct which, always in the bicrossproduct basis, reads:

∆P0 = P0 ⊗ 1 + 1⊗ P0

∆Mi = Mi ⊗ 1 + 1⊗Mi

∆Pi = Pi ⊗ 1 + eλP0 ⊗ Pi

∆Ni = Ni ⊗ 1 + e+λP0 ⊗Ni + λεijkPj ⊗Mk

The Casimir of this quantum group provide a deformation of the

Energy-Momentum dispersion relation and this could be used

to explain γ -ray bursts (Amelino-Camelia). The problem is that,

being the commutation relations nonlinear, nonlinear changes of

coordinates are allowed, and therefore these dispersion relations

become basis-dependent.
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Is it possible to draw conclusions?

I knowingly avoided to give details of the physical predictions of the various

kinds of noncommutative geometry. Not because there are none, but because

I preferred to give an overview of the tool, not of the artifacts. Each of those

would deserve a seminar.

My personal conclusion is that at the Planck scale there should

be a noncommutative structure, and that we are developing a set

of tools which are likely to be the right ones to describe physics

at the Planck length.

Noncommutative geometry should probably complement a more

general theory, strings, loop quantum gravity, . . .

Fortunately we can expect some input from experiments and

observations: LHC, Planck, cosmic rays
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Things I did not even mention. . .

• Noncommutative gauge theories, Seiber Witten map

• The noncommutative geometry of string theories (Vertex operators, Hilbert
space of string states, duality etc.

• The noncommutative geometry of loop quantum gravity (spin networks,
projective limits etc.)

• Fuzzy spheres and discs, �eld theories on fuzzy spaces

• Noncommutative (non Hausdor�) lattices

• Noncommutative spheres, tori and other noncommutative spaces

• Matrix models
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