
Twisting all the way

from Classical Mechanics to Quantum Fields

Fedele Lizzi

With Paolo Aschieri & Patrizia Vitale

Alessandria 2007



I need not motivate to this audience the need for a Noncommu-

tative Geometry of spacetime

The implementation of noncommutativity via the twist gives the

possibility to maintain symmetries of spacetime also in the pres-

ence of the Grönewold-Moyal product, albeit in a deformed guise

Still there is discussion as to the correct way to implement this

product at the quantum level

We take a step backward and start discussing the twist in clas-

sical mechanics
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Our guiding guiding is the following:

Whenever you see a product: Twist it!

Given an associative algebra, which we may think as representing

spacetime, and a Lie algebra Ξ , acting on it, we introduce the

twist, an invertible element of UΞ⊗ UΞ (Sweedler notation)

F−1 = f̄
α ⊗ f̄α

F = fα ⊗ fα

For a bilinear map (in particular a product if X = Y = Z )

µ : X ⊗ Y → Z

2



where we assumed that X and Y are UΞ modules.

Now define the twisted map

µ? : f̄α(X)× f̄α(Y ) → Z

where by f̄α(X) we indicate the appropriate representation of

the twist
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We now consider the “Moyal” twist, whose representation on

the space of functions on Rn is:

F = e−
iθij

2 ∂i⊗∂j

So that the Lie algebra Ξ is that of translations

If all X, Y and Z are C(Rn) the pointwise product is deformed

into the Moyal product: f ? g = f̄α(f) · f̄α(g)
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Define also the universal R matrix:

R := F21F−1 := Rα ⊗ Rα = F−2

It measures the noncommutativity of the product:

f ? g = R̄α(g) ? R̄α(f)

with R−1 := R̄α ⊗ R̄α
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Classical Mechanics

Phase space R2n with coordinates xm, pm and another product:

Poisson bracket

{f, g} := ∂mf ∂̄mg − ∂̄mf ∂mg

∂m :=
∂

∂xm
; ∂̄m :=

∂

∂pm

The bracket is antisymmetric, satisfies Leibniz and Jacobi. To it we associate

a derivation Xf ≡ {f, ·} and hence a vector field. So the bracket is really a

Lie derivative

{f, g} = LXf
g
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The vector fields form a Lie algebra

[LXf
,LXg] = LX{f,g}

Time evolution is given by Hamiltonian ḟ = −{H, f} = −LXH
f

And we know how to implement all other symmetries, translations, rotations

etc.

A classical system is invariant under a Lie algebra G with gen-

erators Xi if

LXi
H = 0
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Twist!

{f, g}? = {̄fα(f), f̄α(g)}

A simple calculation shows

{f, g}? = ∂mf ? ∂̄mg − ∂̄mf ? ∂mg

Antisymmetry, Leibniz and Jacobi now hold in twisted form

{f, g}? = −{R̄α(g), R̄α(f)}? {f, g ? h}? = {f, g}? ? h + R̄α(g) ? {R̄α(f), h}?

{f, {g, h}?}? = {{f, g}?, h}? + {{f, R̄α(h}?}, R̄α(g)}?
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The Lie algebra of vector fields becomes a non cocommutative

Hopf algebra

∆?(X) = X ⊗ 1 + R̄α ⊗ R̄α(X)

The twisted Leibniz rule can be read as

X?(g ? h) = µ? ◦∆?(X)(g ⊗ h)

You may be used to a different Hopf algebra structure with ∆F = F∆0F−1 .
The two Hopf algebras are isomorphic
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This twisted classical mechanics has interesting features. Defin-

ing naturally

ḟ = −{H, f}? = −L?
XH

f

we see that, for an Hamiltonian of the kind H = p2 + V (x) the

Poisson brackets of x and p do not change

ẋm = −{H, xm}? = −{H, xm} ṗm = −{H, pm}? = −{H, pm}
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This is not true for other functions. Take two-dimensional an-

gular momentum L = εijx
ipj and the harmonic oscillator

H =
1

2
(xi ? xjδij + pi ? pjδ

ij) =
1

2
(xixjδij + pipjδ

ij)

then

L̇ =
i

2
εijθ

ij = iθ

angular momentum in not a constant of the motion, and the

Hamiltonian is not rotationally invariant!

This should come as no surprise, we are to implement a symmetry for rotation.

They do not form a Hopf subalgebra of the Hopf algebra of vector fields
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Fields

The degrees of freedom are Φ(x),Π(x) with (equal time) Pois-

son brackets among functionals:

{F, G} =
∫
Rn−1

dn−1x

(
∂F

∂Φ

∂G

∂Π
−

∂F

∂Π

∂G

∂Φ

)
coming from the equal time

{Φ(x),Φ(y)} = {Π(x),Π(y)} = 0 {Φ(x),Π(y)} = δ(x− y)
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Twist!

{F, G}? = {̄fα(F ), f̄α(G)}

We have to qualify the action of the twist on the fields: Lift of the action of
∂µ on Rn to ∂∗µ acting on functionals of the fields:

∂∗µG =

∫
dn−1y

∂G

∂Φ(y)
∂µΦ(y)

we hence define the lift of the twist

F∗ = e
i
2θij

∫
dn−1x

(
∂iΦ

∂
∂Φ(x)

+∂iΠ
∂

∂Π(x)

)
⊗

∫
dn−1y

(
∂jΦ

∂
∂Φ(y)

+∂jΠ
∂

∂Π(y)

)
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Calculate the deformed bracket among the fields:

{Φ(x),Π(y)}? = {̄fα(Φ(x)), f̄α(Π(y))} =

δ(x− y)−
i

2
θij

{∫
dz∂∗i Φ(z)δ(x− z),

∫
dw∂∗jΠ(w)δ(y − w)

}
+ O(θ2) =

δ(x− y)−
i

2
θij∂∗

yj∂
∗
xiδ(x− y) + O(θ2)

The second term in the third line of the above equation vanishes
because of symmetry, and for similar reasons the others vanish
as well. Therefore also in the field theoretical case the Poisson
bracket among coordinates is unchanged.

Functionals will however have a deformed dynamics, and this
may have consequences for theories with solitons etc. Leave it
for another day and proceed to:
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Quantization

We now proceed to the canonical quantization of the fields

expansion of the classical fields in Fourier modes using the Lorentz invariant measure Ep =
√

m2 − ~p2

Φ(x) =
∫ d2p

(2π)2Ep

(
a(~p)e−ipx + a∗(~p)eipx

)

Π(x) =
∫ d2p

(2π)

(
−iEpa(~p)e

−ipx + iEpa
∗(~p)eipx

)
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the twisted relations can be inverted to give

a(~p) =
1

2π

∫
d2x

(
EpΦ(x)eipx + iΠ(x)eipx

)
a∗(~p) =

1

2π

∫
d2x

(
EpΦ(x)e−ipx − iΠ(x)e−ipx

)

and this gives the Poisson bracket

{a(~p), a∗(~q)} = −2iEpδ(~p− ~q)

As in the case of the fields, with a similar calculation, it is possible to see

that the twisted Poisson bracket is equal to the untwisted one

{a(~p), a∗(~q)}? = −2iEpδ(~p− ~q)
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To quantize we equate the twisted commutator to i~ times the

twisted Poisson bracket.

To define the twisted commutator we use the rule which has

served us so far:

[F̂ , Ĝ]? = [̄fα(F̂ ), f̄α(Ĝ)]

Using the fact that R = F−2 it is possible to see that

[F̂ , Ĝ]? = F̂ ? Ĝ− R̄α(Ĝ) ? R̄α(F̂ )

17



The commutator is the difference between the product of two

elements of an algebra minus the product of the two elements

taken in the reverse order

In the twisted algebra however the inversion is made via the

inverse R matrix

Applying this to the fundamental fields:

[Φ̂(x), Π̂(y)]? = Φ̂(x) ? Π̂(y)− R̄α(Π̂(y)) ? R̄α(Φ̂(x))

where the product of two fields at different points is defined as

always by the twist:

Φ̂(x) ? Π̂(y) = f̄α(Φ̂(x))̄fα(Π̂(y))
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Canonical quantization consists in setting the (star) commutator

equal to the (star) Poisson bracket:

[â(~p), â∗(~q)]? = i~{a(~p), a∗(~q)} = 2i~Epδ(p− q)

The ? commutator among the Fourier modes does not involve

the product among the coordinates, but it involves the R matrix.

To see its action we have to represent the action of ∂i on â(~p) .
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Since these are Fourier modes, from the action of ∂∗i on Φ,Π

it results

∂i B â(~p) = ipia(~p)

Using again the fact that R = F−2 it then results:
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[â(~p), â∗(~q)]? = â(~p)â∗(~q)− eiθijpiqj â∗(~q)â(~p) = 2~Epδ(~p− ~q)

The above relation has been introduced already in the literature

(Bal et al. Fiore-Wess...), with phenomelogical consequences,

and causing also some controversies

We find it coming from a well defined coherent procedure defined

from first principles, Basically it is a calculation, and this lends

support to this ealrlier work
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Conclusions

It is probably time Noncommutative Geometry starts
confronting itself with experiments

To do this we have to build a field theory, and among
the possible choices, only some sort of canonical pro-
cedure, starting from first principle, and respecting
symmetries (also in a deformed form) can ensure co-
herence of the theory

We hope to have given a contribution in this direction
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