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There are several good reasons for which physicists often ap-

proximate spaces, or rather functions on a space, with matrices

The most obvious one is the possibility to solve problems numerically

But equally important is the fact that a theory may simply loose

its meaning at very short distances (effective theories)

The straightforward lattice approximation, whereby we approximate a space

with a set of topologically disconnected points, and functions with arrays

of numbers multiplied componentwise, looses totally the information of the

underlying space, and in particular nearly totally destroys the symmetries of

the problem

A lattice approximation for noncommutative spaces is impossible
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I will first discuss the noncommutative torus, the archetype of all Noncom-

mutative Geometries

A simple but extremely rich mathematical structure, it has also several phys-

ical application.

It is the algebra of elements a =
∑
n,m

anmU
n
1U

m
2 generated by two

unitary generators with the relation

U1U2 = e2πiθU2U1
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It is possible to study field theories on a NCTorus with the use

an integral (trace) ∫
− a := a0,0

and two derivatives

∂iUj = 2π i δijUi No sum on i

We can therefore construct, for example, a scalar field theory

with action

S =
∫
− L[Φ, ∂µΦ]
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Let us look at Matrix Approximations to the NCTorus

When the noncommutativity parameter p/q is rational we can

try a matrix approximation. That is we substitute the Ui ’s with

their finite dimensional representation (clock and shift) approxi-

mations:

Cq =


1

e2π i p
q

e2π i 2p

q

. . .

e2π i (q−1)p

q

 , Sq =


0 1 0

0 1
.. . . . .

. . . 1
1 0


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CqSq = e2π i p
qSqCq

We can then consider a sequence of algebras with rational values
converging the noncommutative torus parameter:

θn =
pn

qn
→ θ

Thus the noncommutative field theory becomes a matrix model with the

projection π(a) =
∞∑

m,r=−∞
am,r (Cq)m (Sq)r .

Note however that the noncommutative torus, like the ordinary
torus, is not the inductive limit of finite dimensional algebras.

For example the K1 of an AF algebra is always trivial, the one of the NCTorus is not

Moreover there are no approximations of the derivations on the
matrix algebra. So the expression of an action is problematic
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It is however possible Pimsner-Voiculescu, LLS to embed the non-

commutative torus in an AF algebra.

A0
ρ1
↪→ A1

ρ2
↪→ A2

ρ3
↪→ · · ·

ρn
↪→ An

ρn+1
↪→ · · ·

At each level the Ai are sums of the matrix algebras Mn(C) or their block subalgebras:

A1 =
⊕n1

j=1
M

d(1)
j

(C) and A2 =
⊕n2

k=1
M

d(2)
k

(C)

but since

ρ1(A1) ⊂ A2

A1
∼=
⊕n2

k=1

⊕n1

j=1
Nkj Md(1)

j

(C)

ex: A1 = M3 ⊕M2 =
(
a

b

)
, A2 = M13, ρ(A1) =

 a
a

a
b

b


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We can find the Bratteli diagrams

Considering the expansion of θ as a continued fraction

θ = limn θn = limn
pn
qn

θn = c0 + 1

c1 +
1

c2 +
1

... cn−1 +
1

cn

pn = cnpn−1 + pn−2 , p0 = c0 , p1 = c0c1 + 1

qn = cnqn−1 + qn−2 , q0 = 1 , q1 = c1

An = Mqn(C)⊕Mqn−1(C)

with embeddings
(
M

N

)
ρn7−→


M

. . .
M

}
cn

N
M


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The corresponding Bratteli diagram is:
...

...

s s

s s
�

�
�

�
�

�

@
@

@
@

@
@

cn

qn−1 qn−2

qn qn−1

Associated we have positive maps ϕn : Z2 → Z2 defined by(
qn
qn−1

)
= ϕn

(
qn−1
qn−2

)
, ϕn =

(
cn 1
1 0

)
.

The group K0(A∞) is the inductive limit

K0(A∞) = Z + θZ

with K+
0 (A∞) =

{
(z, w) ∈ Z2 | z + θw ≥ 0

}
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At a finite level we can define the U ’s as before

U
(n)
1 U

(n)
2 = e2πipn/qnU

(n)
2 U

(n)
1

That we are approximating the torus is given by the relation (Pimsner–Voiculescu)

limn→∞

∥∥∥ρn (U (n−1)
a ⊕ U (n−2)

a

)
− U (n)

a ⊕ U (n−1)
a

∥∥∥
An

= 0 a = 1,2

Note that U(∞)
i is not a coherent sequence, it is a limit of co-

herent sequences, therefore

Aθ ⊂ A∞

The NCtorus in some sense is on the “boundary” of the algebra

9



An interesting corollary is the following:

It is a classic result in number theory that two irrational θ, θ′ have

the continued fraction expansion which is he same (up to a shift

in the indices if and only if they are connected by the SL(2,Z)

transformation which defines Morita equivalence.

If Aθ and Aθ′ are Morita equivalent, then θ and θ′ have the same

tail (up to a shift) in the continued fraction expansions, since

in a Bratteli diagram what counts is only the infinite tail, the

corresponding A∞ are the same.

Morita equivalent noncommutative tori

are subalgebra of the same AF algebra.
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We also can define the Hilbert spaces: Hn = Cqn ⊕Cqn−1 on which the algebra

An naturally acts.

The embeddings are defined by:

(
~v
~w

)
ρ̃n7−→



~v√
1+cn...
~v√

1+cn

cn
~w

~v√
1+cn


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Can we use these theories to approximate physical systems?

We can prove that the physical correlation functions can be well approxi-

mated (LLS)

Given any two sequences of vectors

ψ′n−1, ψn−1 ∈ Hn−1

it results

limn

〈
ψ′n−1 ,

(
U

(n−1)
a ⊕ U

(n−2)
a

)
ψn−1

〉
Hn−1

−
〈
ρ̃n(ψ′n−1) ,

(
U

(n)
a ⊕ U

(n−1)
a

)
◦ ρ̃n(ψn−1)

〉
Hn

= 0
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We proved (using lots of triangular inequalities) the limit of the expectation

values of all elements of the algebra is well defined in the large N limit.

This ensures the continuity in θ as well.

Incidentally, a similar construction can be made for the rational case as well

Therefore, while it is true that the algebras for the rational and

irrational cases are mathematically very different, physically rele-

vant quantities (such as expectation values etc.) are continuous

in θ.

But the derivatives remain problematic, and we can only define

an exponentiated version of it
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There is a different approximation, based on nonlocal solitons,

where the elements of the approximate algebra are matrix valued

functions

The noncommutativity of the algebra allows nontrivial projections, selfadjoint

elements of the algebra with the property P 2 = P

and partial isometries TT †T = T

Projections and partial isometries represent D-brane configurations for type IIA and IIB super-

strings respectively. They are local minima of the potential and therefore can be considered

solitons of the theory
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For our purposes we need a slight generalization of the Powers-Rieffel pro-

jection, are ‘ring’-like solitons (Powers-Rieffel solitons) which ‘wrap’ around

the torus

Consider a particular sequence of θn =
pn

qn
→ θ and the two sequences of

projections

P11
n = V −q2n−1 Ω(gn) + Ω(fn) + Ω(gn)V

q2n−1

P11
n
′
= U q2n Ω(g′n) + Ω(f ′n) + Ω(g′n)U

−q2n

with f, g one-dimensional bump functions
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We can ‘see’ these solitons using the fact that the NCtorus is the Weyl

quantization of the torus, and use the inverse Wigner map

Ω−1(a)(x, y) =
∞∑

m,r=−∞
am,re

−π imr θe2π i (mx+r y)

The complete projection looks like

As n increases the bumps narrow down and the number of spikes increases
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Shifting f and g by 1/q2n is possible to obtain other q2n − 1 projections P ii
n , exchanging

axis one obtains a second set

We can now perform a construction, due to Elliott and Evans,

in which we construct a subalgebra of the NCtorus isomorphic

to the sum of matrix valued functions on two circles

As θn → θ the subalgebra grows and in the limit becomes exactly

the algebra of the NCtorus

As the notation suggests the P ii will be the diagonal elements

The nondiagonal elements are built from the partial isometry

part of the operators interpolating between the ranges of the

projectors: P iiV P jj
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Since the operator is not selfadjoint its Wigner function is not real, we plot real part and

modulus (the imaginary part is qualitatively similar to the real part)

We give the set of projections and isometries, obtained from P or P ′ , the name of tower
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The P ij behave as ‘matrix units’, the basis for a matrix algebra

Pij Pkl = δjk Pil

The only problem is in the definition of P 1q , which can be done in two

different ways, either shifting q times P 21 and identifying P q+1 q with P 1q ,

or from P1q = P12 P23 · · ·Pq−1,q

The two expressions differ for a partial isometry z

With the identification of z = e2π i τ with the exponential of an

angle coordinate of a circle, elements of the form
q∑

i,j=1

∞∑
k=−∞

CkijP
ijzk

close the algebra of matrix valued functions on a circle
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After a rotation to make the two towers orthogonal, the same construction can be made in

the second tower

Remember that the algebra we have constructed is a subalgebra of the NC-

torus at each level of the approximation.

There are two elements of the matrix algebra approximations of

Ui in the sense that ‖Ui − Ui‖ → 0

Hence we can project all elements of the NCtorus to the sum of matrix

valued functions on two circles, making a ‘small’ error. Unlike the usual

matrix approximations, the approximation converges strongly
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To construct a field theory we need to define derivatives and integral. The

integral can be expressed to act on matrix valued functions of τ and τ ′∫
− a = β

∫ 1

0
dτTr a(τ) + β′

1∫
0

dτ ′Tr′ a′(τ ′)

with β, β′ quantities depending on p, q, p′, q′

It is possible to define approximate derivatives ∇1U = U,∇2V = V,∇1V = ∇2U = 0

The approximation is that they close a Leibnitz rule only in the limit

The expression for the two derivatives is slightly complicated, but
it can be given solely in terms of the matrix valued functions, so
that it is possible to map the field theory on the noncommutative
torus on the action of matrix valued functions of one variable, a
Matrix Quantum Mechanics
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∇1an(z, z
′ ) = 2π i

[
q2n∑
i,j=1

∑
k∈Z

i α(n)

i+
[
q2n
2

]
0
,j;k

zk (Cq2n)i
(
Sq2n(z)

)j
⊕

q2n−1∑
i′,j′=1

∑
k′∈Z

(
i′ + q2n−1k

′
)
α′ (n)

i′,j′+
[
q2n−1

2

]
0
;k′
z′ k

′ (Sq2n−1(z
′ )
)i′

(Cq2n−1)
j′

]
,

∇2an(z, z
′ ) = 2π i

[
q2n∑
i,j=1

∑
k∈Z

(j + q2n−1k)α
(n)

i+
[
q2n
2

]
0
,j;k

zk (Cq2n)i
(
Sq2n(z)

)j
⊕

q2n−1∑
i′,j′=1

∑
k′∈Z

j′ α′ (n)

i′,j′+
[
q2n−1

2

]
0
;k′
z′ k

′(Sq2n−1(z
′ )
)i′

(Cq2n−1)
j′

]
.

where z, z′ are unitary coordinates on the circles, Cq2n is the usual clock operator defined
above, and Sq2n−1(z ) is a modification of the shift operator defined as:

Sq(z) =


0 1 0

0 1
.. . . . .

. . . 1
z 0


Together they are a basis for the functions on two circles.
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Noncommutative Geometry, in its various guises, provides also

a way to approximate ordinary spaces using matrices, with the

advantage that we can do this preserving the symmetries of the

original space

The standard example is the fuzzy sphere, loosely speaking,

take “coordinates” on 3-d space with

[Xi, Xj] = i
r√

N(N + 1)
εijkXk

and the constraint

∑
i

X2
i = R
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choosing

Xi =
r√

N(N + 1)
Li

with the L’s in the N(N + 1) representation of su(2)

The sphere constraint X2
1 +X2

2 +X2
3 = r2 is just the Casimir

of the representation

The algebra is finite dimensional, but rotations act on it, as well

as the usual three derivations (which are the X’s themselves)

24



More properly (but it takes longer) one can define coherent states for the

representations of su(2) , these are finite dimensional matrices, and we can

express functions on the sphere in this (truncated) basis

Hence we have a finite dimensional approximation to functions on the sphere

The rotational symmetry of the sphere acts on this algebra by construction,

and provides us with a fuzzy Laplacian

∇2f =
∑
i

[Li, [Li, f ]]

The eigenvalues of this Laplacian are the same as the usual one on the sphere,

truncated to the level N(N + 1)

The eigenfunctions of this Laplacian are called fuzzy harmonics, they are a

basis for the matrices N ×N
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A physicist would say that in the limit the fuzzy sphere converges

to the sphere, a mathematician (Rieffel) proves that it is possible

to define a distance among quantum Gromov spaces, and to

show that with this distance the fuzzy sphere converges to the

commutative one.

Similar constructions can be made for all CPn spaces, since like

the sphere they are coadjoint orbits of groups

To finish however I would like to spend a few words on the fuzzy

disc

work in collaboration with P. Vitale & A. Zampini: Ogni scarrafone è bello ’a mamma sua
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Consider a function on the plane with its Taylor expansion:

ϕ(z̄, z) =
∞∑

m,n=0

ϕTay
mnz̄

mzn

Now “quantize” the plane, using a quantity θ analogous to ~,
and associate to a function the operator

Ωθ(ϕ) := ϕ̂ =
∞∑

m,n=0

ϕTay
mna

†man

This is a variant of the Weyl map used to define the Moyal product

Ωθ has an inverse expressed using coherent states:

Ω−1
θ (ϕ̂) = ϕ(z̄, z) = 〈z| ϕ̂ |z〉
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We can express operators with a density matrix notation:

ϕ̂ =
∞∑

m,n=0

ϕmn |m〉 〈n|

With |n〉 eigenvectors of the number operator N = a†a.

The density matrix basis has a very simple multiplication rule:

|m〉 〈n| p〉 〈q| = δnp |m〉 〈q|

The analog of the Taylor expansion in terms of the coefficient
ϕnm is

ϕ(z̄, z) = e−
|z|2
θ

∞∑
m,n=0

ϕmn
z̄mzn√

n!m!θm+n
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We have implicitly defined a noncommutative ∗ product on the
plane

(
ϕ ∗ ϕ′

)
(z̄, z) = Ω−1

(
Ω(ϕ)Ω(ϕ′)

)
z ∗ z̄ − z̄ ∗ z = [z, z̄]∗ = iθ

In the density matrix basis this product is the usual row by column
matrix product

(
ϕ ∗ ϕ′

)
mn

=
∞∑
k=1

ϕmkϕ
′
kn

Also∫
dzdz̄ ϕ(z̄, z) =

1

2π
Tr ϕ̂ =

1

π

∞∑
n=0

ϕnn
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Since we reduced the product to a matrix product this means

that we can consider a obtained truncating the expansion to a

finite N

It is the algebra obtained with the projector

PNθ =
N∑
n=0

〈z| n〉 〈n| z〉 =
N∑
n=0

r2n

n!θn
e−

r2
θ

The subalgebra is isomorphic to N ×N matrices
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In the combined limit N →∞ θ → 0 Nθ = 1 the disc becomes
sharper

Profile of the spherically symmetric function PN
θ for the choice R2 = Nθ = 1

and N = 10,102,103. As N increases the step becomes sharper.

In the limit we obtain the characteristic function of the disc
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Hence, as θ = 1/N decreases we have a sequence of algebras,

and within it a sequence of subalgebras, defined by PNθ , made

of functions which have mostly support on the unit disc

Rotations are still there, obtained just multiplying the coefficients

by a phase.

We can define the matrix equivalent of the derivations as:

∂zϕ =
1

θ
〈z| [a†,Ω(ϕ)] |z〉

∂z̄ϕ =
1

θ
〈z| [a,Ω(ϕ)] |z〉

and project them to obtain fuzzy derivations
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The laplacian is a finite operator and we can calculate its eigen-

values, and compare them with the eigenvalues of the Laplacian

on the disc

Comparison of the first eigenvalues of the fuzzy Laplacian (circles) with those of the contin-

uum Laplacian (crosses) on the domain of functions with Dirichlet homogeneous boundary

conditions. The orders of truncation are N = 10,20,30
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Also in this case one can define fuzzy bessel functions which in the limit

converge (inside the disc) to the ordinary Bessel

Comparison of the radial shape for Φ(N)
0,2 (r) with the symbol of the eigenmatrix of the fuzzy

Laplacian with respect to the eigenvalue λ(N)
0,2 . The orders of truncation are N = 10,20,30.
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One should not try to probe too short distances, there is an

Heisenberg uncertainty principle at work, which causes a Ultraviolet-

Infrared mixing

Comparison of the radial shape for the Φ(N)
0,10. The orders of truncation are N = 30,35,40.

The bump tends to disappear.
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Conclusions

Much of mathematics we would do comes from quantum me-
chanics and the need to accomodate the geometry of the quan-
tum phase space in the formalism

The original formulation of quantum mechanics was in the form
of Matrix Mechanics, which became the theory of operators on
Hilbert spaces

Noncommutative Geometry started in mathematics as a filiation
of the study of these theory, now however we see that in physics
there is an useful point of view to study spaces Matrix Geometry

This is still in need of a more rigorous and deeper understanding.
This may produce useful and beautiful mathematics, but will
certainly sharpen the tool the physicists use
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