
The original title of my talk was:

NONCOMMUTATIVE GEOMETRY

but upon receiving the programme I discovered

they wanted me to talk of:

NONCOMMUNICATIVE GEOMETRY

I don’t know what the latter is, so I will have

to make it up.
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We live in the age of communications, so the

points of spacetime communicate with each

other via fields.

But just as in the case of modern days internet.

Too much communication is not necessarily a

good thing!

Points that are too close to each other com-

municate too much, and hence they blow up,

so we have to impose a cutoff

In a Noncommunicative Geometry points don’t

talk so much each other. The fields are finite,

and therefore they cannot give infinities
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A first example of such Noncommunicative Ge-

ometry is a Lattice

The algebra of fields ϕI defined on a lattice is

just a collection of points with pointwise mul-

tiplication

(ϕψ)I = ϕIψI

Lattices have very few degrees of freedom

And they have very few symmetries

The former is good (renormalization, calculations)

The latter is bad, symmetries (and broken symmetries)

are essential features of a physical theory. We want to

keep the symmetries of spacetime.
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Actually it is not true that on a lattice points

do not talk to each other. They do via deriva-

tives, Laplacians, Dirac operators . . . . We

need to take this into account.

For example the derivative on the direction ~k on a lattice with

spacing a is: (∇~k
ϕ)I =

ϕ
I+~k

− ϕI

a

So we want to find a way to obtain finite space

which retain as many as possible of the sym-

metries of the continuum space

I will just present some examples. I do not

claim that they are a fair rendition of spacetime

as a quantum space. But they indicate at least

possibility that at short distances symmetries

can be retained and degrees of freedom cut
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Suppose we want to discretize the functions
on a two dimensional torus.

One option is to consider matrices with en-
tries the values of the functions on a lattice of
points.

Multiplication is just the product of the single elements

Translational symmetry is lost, apart from a
small subgroup

We can try a fuzzy approximation

Torus: x1, x2 ∈ [0,1]

Functions on a torus:

ϕ(x) =
∑

mn ϕmne2πimx1e2πinx2

It is impossible to truncate this sum at a finite
level, since the product will produce higher har-
monics
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Define finite N-dimensional clock and shift matrices:

U1 =




1
e

2πi

N

e2 2πi

N

. . .

e(N−1) 2πi

N




U2 =




0 1 0
0 1

.. . . . .
. . . 1

1 0




.

ϕ =
∑N

m,n=1 ϕmnUn
1Um

2

The sum is finite because UN
1 = UN

2 = I

Now the harmonics retained are finite, the space is finite

dimensional and the products is consistent at a price

U1U2 = e
2πi

N U2U1

After all Noncommunicative Geometry is Non-
commutative Geometry

So I can go on with my seminar after all!
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On a fuzzy Torus there is the U(1) × U(1)

translations group unchanged.

For example translation of angles αk in the direction k

are: ϕmn → ei(mα1+nα2)

There are the two derivatives:

∇1ϕ =
N∑

m,n=1

mϕmnUn
1Um

2

The spectrum of the Laplacian is the same as

in the communicative case, only truncated at

level N

If N large enough, and hence the noncommu-

tativity small enough, the two spaces probed

by a low energy theory would look the same
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Another famous example is the fuzzy sphere

[Xi, Xj] = i
r√

N(N + 1)
εijkXk

choosing

Xi =
r√

N(N + 1)
Li

with the L’s in the N(N + 1) representation of su(2)

The sphere constraint X2
1 + X2

2 + X2
3 = r2 is

just the Casimir of the representation

The algebra is finite dimensional, but rotations

act on it, as well as the usual three derivations

(which are the X’s themselves)

Also in this case the Laplacian is the same as the one

on the sphere, but is truncated
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Let me now introduce the fuzzy disc
work in collaboration with P. Vitale & A. Zampini

Consider a function on the plane with its Taylor
expansion:

ϕ(z̄, z) =
∞∑

m,n=0

ϕTay
mnz̄mzn

Now “quantize” the plane, using a quantity θ

analogous to ~, and associate to a function the
operator

Ωθ(ϕ) := ϕ̂ =
∞∑

m,n=0

ϕTay
mna†man

This is a variant of the Weyl map used to define the Moyal product

Ωθ has an inverse expressed using coherent
states:

Ω−1
θ (ϕ̂) = ϕ(z̄, z) = 〈z| ϕ̂ |z〉
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We can express operators with a density matrix

notation:

ϕ̂ =
∞∑

m,n=0

ϕmn |m〉 〈n|

With |n〉 eigenvectors of the number operator

N = a†a.

The density matrix basis has a very simple mul-

tiplication rule:

|m〉 〈n| p〉 〈q| = δnp |m〉 〈q|

The analog of the Taylor expansion in terms

of the coefficient ϕnm is

ϕ(z̄, z) = e−
|z|2
θ

∞∑

m,n=0

ϕmn
z̄mzn

√
n!m!θm+n
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We have implicitly defined a noncommutative

∗ product on the plane

(
ϕ ∗ ϕ′

)
(z̄, z) = Ω−1

(
Ω(ϕ)Ω(ϕ′)

)

z ∗ z̄ − z̄ ∗ z = [z, z̄]∗ = iθ

In the density matrix basis this product is the

usual row by column matrix product

(
ϕ ∗ ϕ′

)
mn

=
∞∑

k=1

ϕmkϕ′kn

Also

∫
dzdz̄ ϕ(z̄, z) =

1

2π
Tr ϕ̂ =

1

π

∞∑

n=0

ϕnn
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Since we reduced the product to a matrix prod-

uct this means that we can consider a obtained

truncating the expansion to a finite N

It is the algebra obtained with the projector

PN
θ =

N∑

n=0

〈z| n〉 〈n| z〉 =
N∑

n=0

r2n

n!θn
e−

r2
θ

The subalgebra is clearly isomorphic N ×N matrices

What sort of functions are there in this alge-

bra?
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The function PN
θ for N = 102, θ = 1/N .
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The disc becomes sharper as N increases, keep-

ing R = θ fixed
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Profile of the spherically symmetric function

PN
θ for the choice R2 = Nθ = 1 and N =

10,102,103. As N increases the step becomes

sharper.
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The subalgebra defined by PN
θ is therefore

made of functions which have mostly support

on the disc of radius R = 1/θ . More sharply

defined as N increases

We also have edge states
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The edge states 〈z|N〉〈N |z〉 for N = 10 and

N = 100.

Rotations are still there, obtained just multi-

plying the coefficients by a phase.
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Still I need more to convince you that this ma-

trix algebra has to do with the disc.

Derivatives and Laplacians

The starting point to define the matrix equiv-

alent of the derivations is:

∂zϕ =
1

θ
〈z| [a†,Ω(ϕ)] |z〉

∂z̄ϕ =
1

θ
〈z| [a,Ω(ϕ)] |z〉

Note that ∂z(P
N
θ ∗ ϕ ∗ PN

θ ) 6= ΠN
θ ∗ (∂zϕ)PN

θ but

the latter is simpler to implement for matrices
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Since a and a† are still infinite matrices, ∂̂zϕ̂

and ∂̂z̄ϕ̂ are N + 1×N + 1 matrices

The fact that functions and “form” live in different

space is standard in NCG

The laplacian is a finite operator and we can
calculate its eigenvalues, and compare them
with the eigenvalues of the Laplacian on the
disc
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The first eigenvalues of the laplacian on the disc (dots)

and the fuzzy laplacian (solid lines) for N = 5,10,15.

The lines corresponding to the three cases can be dis-

tinguished because the agreement with the exact case

improves as N grows. In the figure on the right the curve

which interrupts is the one corresponding to N = 5, for

which there are only 36 eigenvalues.
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Massless Scalar Field Theory

The setting is ready to solve nonperturbatively

theories with a path integral formalism

To a an action of the type:

S =
∫

d2zϕ∇2ϕ +
m2

2
ϕ2

We associate the fuzzy action

S2
θ =

1

π
Tr ϕ̂∇̂2ϕ̂

m2

2
ϕ̂2 + V (ϕ̂)

A field theory can be solved with a path inte-

gral Montecarlo or other techniques
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A particularly simple case is when the theory

is free and massless, then

〈ϕ(z̄, z)ϕ(z̄′, z′)〉 = G(z, z′)

The path integral gives just the inverse of the

Laplacian

G
(N)
θ (z, z′) =

∑N
m,n,p,q=1

e
−|z|

2+|z′|2
θ (∇̂−2)mnpqz̄pzqz′mz̄′n√

p!q!m!n!θm+n+p+q
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We can therefore compare the exact Green’s

function on the Disc with our approximation
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Comparison of the 3D and contour plot of

G(z, z′) for

z = 0 + 1/2i as a function of z′
The fuzzy case (right) is with N = 15
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Conclusions

There are indications (for example from string

theory) that at very short distances the struc-

ture of spacetime may be noncommutative

If we are willing to give up commutativity then

we open the possibility that spacetime may be

represented by matrices rather than continuous

functions

All this still retaining the fundamental symme-

tries of spacetime
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