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Usually the way to discretize a system (for the solution of a

differentail equation, the study of a filed theory etc.) is a Lattice

The algebra of fields ϕI defined on a lattice is just a collection

of points with pointwise multiplication

(ϕψ)I = ϕIψI

Lattices have very few degrees of freedom

And they have very few symmetries

The former is good (renormalization, possibility to do calculations)

The latter is bad, symmetries (and broken symmetries) are essential features

of a physical theory. We want to keep the symmetries of spacetime.
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A lattice is not just a collection of points, there are also relations

among those: derivatives, Laplacians, Dirac operators . . . . They

define which type of lattice we are dealing with.

For example the derivative on the direction ~k on a lattice with spacing a is:

(∇~k
ϕ)I =

ϕ
I+~k

− ϕI

a

So we want to find a way to obtain a finite space which retain

as many as possible of the symmetries of the continuum space

Here I will present some examples of a different nonlocal kind a

discretization which, while cutting the degrees of freedom of the

theory, retain all basic symmetries of it.
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Suppose we want to discretize the functions on a two dimensional

torus.

One option is to consider matrices with entries the values of the

functions on a lattice of points.

Multiplication is just the product of the single elements

Translational symmetry is lost, apart from a small subgroup
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We can try a fuzzy approximation

Torus: x1, x2 ∈ [0,1]

Functions on a torus:

ϕ(x) =
∑

mn ϕmn e2πimx1 e2πinx2

It is impossible to truncate this sum at a finite level, since the

product will produce higher Fourier modes
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Define finite N-dimensional clock and shift matrices:

U1 =




1
e

2πi

N

e2 2πi

N

. . .

e(N−1) 2πi

N




U2 =




0 1 0
0 1

.. . . . .
. . . 1

1 0




.

ϕ =
∑N

m,n=1 ϕmnUn
1Um

2

The sum is finite because UN
1 = UN

2 = I
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Now the harmonics retained are finite, the space is finite dimensional and the

products is consistent at a price U1U2 = e
2πi

N U2U1

This is the Fuzzy Torus originally introduce by H. Weyl

On a fuzzy Torus there is the U(1) × U(1) translations group

unchanged.

For example translation of angles αk in the direction k are:

ϕmn → ei(mα1+nα2)ϕmn
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There are the two derivatives:

∇1ϕ =
N∑

m,n=1

mϕmnUm
1 Un

2 ∇2ϕ =
N∑

m,n=1

nϕmnUm
1 Un

2

The spectrum of the Laplacian is the same as in the commu-
nicative case, only truncated at level N

There is also a natural integral

∫
ϕ = Tr ϕ = ϕ00

If N large enough, and hence the noncommutativity small enough,
the two spaces probed by a low energy theory would look the
same
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Another example is the fuzzy sphere introduced by J. Madore

[Xi, Xj] = i
r√

N(N + 1)
εijkXk

choosing

Xi =
r√

N(N + 1)
Li

with the L’s the usual angular momentum operators in the N(N +1) representation of su(2)

The Casimir of the representation becomes the constraint

X2
1 + X2

2 + X2
3 = r2

So that the X ’s define an approximation of the sphere

8



The algebra is finite dimensional, but rotations act on it, as well

as the usual three derivations (which are the X’s themselves)

Again the price we have to pay is the noncommutativity of the

algebra

The algebra of rotations act in a natural way so that we have

retained all symmetries of the theory

Also in this case the Laplacian is the same as the one on the

sphere, but is truncated
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Let me now introduce the fuzzy disc
work in collaboration with P. Vitale & A. Zampini

Consider a function on the plane with its Taylor expansion:

ϕ(z̄, z) =
∞∑

m,n=0

ϕTay
mnz̄mzn

Now “quantize” the plane, using a quantity θ analogous to ~,
and associate to a function the operator

z → a z̄ → a†

for convenience we choose the slightly unusual normalization

[a, a†] = θ
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We thus have a way to associate operators to functions

Ωθ(ϕ) := ϕ̂ =
∞∑

m,n=0

ϕTay
mna†man

This is a variant of the Weyl map used to define the Moyal product

Ωθ has an inverse expressed using coherent states:

Ω−1
θ (ϕ̂) = ϕ(z̄, z) = 〈z| ϕ̂ |z〉
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We can express operators with a density matrix notation:

ϕ̂ =
∞∑

m,n=0

ϕmn |m〉 〈n|

With |n〉 eigenvectors of the number operator N = a†a.

The density matrix basis has a very simple multiplication rule:

|m〉 〈n| p〉 〈q| = δnp |m〉 〈q|

The analog of the Taylor expansion in terms of the coefficient
ϕnm is

ϕ(z̄, z) = e−
|z|2
θ

∞∑

m,n=0

ϕmn
z̄mzn

√
n!m!θm+n
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We have implicitly defined a noncommutative ∗ product on the plane

(
ϕ ∗ ϕ′

)
(z̄, z) = Ω−1

(
Ω(ϕ)Ω(ϕ′)

)

z ∗ z̄ − z̄ ∗ z = [z, z̄]∗ = θ

In the density matrix basis this product is the usual row by column matrix

product

(
ϕ ∗ ϕ′

)
mn

=
∞∑

k=1

ϕmkϕ′kn

Also

∫
dzdz̄ ϕ(z̄, z) =

1

2π
Tr ϕ̂ =

1

2π

∞∑

n=0

ϕnn
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Since we reduced the product to a matrix product this means

that we can consider the subalgebra obtained truncating the

expansion to a finite N

It is the algebra obtained with the projector

PN
θ =

N∑

n=0

〈z| n〉 〈n| z〉 =
N∑

n=0

r2n

n!θn
e−

r2
θ

The subalgebra is clearly isomorphic N ×N matrices

What sort of functions are there in this algebra?
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The disc becomes sharper as N increases, keeping R = θ fixed
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Profile of the spherically symmetric function PN
θ for the choice

R2 = Nθ = 1 and N = 10,102,103. As N increases the step

becomes sharper.
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The subalgebra defined by PN
θ is therefore made of functions

which have mostly support on the disc of radius R = 1/θ . More
sharply defined as N increases

We also have edge states
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The edge states 〈z|N〉〈N |z〉 for N = 10 and N = 100.

Rotations are still there, obtained just multiplying the coefficients
by a phase.
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Still I need more to convince you that this matrix algebra has to

do with the disc.

Derivatives and Laplacians

The starting point to define the matrix equivalent of the deriva-

tions is:

∂zϕ =
1

θ
〈z| [a†,Ω(ϕ)] |z〉

∂z̄ϕ =
1

θ
〈z| [a,Ω(ϕ)] |z〉

Note that ∂z(P
N
θ ∗ ϕ ∗ PN

θ ) 6= PN
θ ∗ (∂zϕ) ∗ PN

θ but in the limit

they coincide (and the latter is simpler to implement for matrices)
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Since a and a† are still infinite matrices, ∂̂zϕ̂ and ∂̂z̄ϕ̂ are

N + 1×N + 1 matrices

The fact that functions and “form” live in different space is standard in NCG

The laplacian is a finite operator and we can calculate its eigenvalues, and

compare them with the eigenvalues of the Laplacian on the disc
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The first eigenvalues of the laplacian on the disc (dots) and the fuzzy laplacian

(solid lines) for N = 5,10,15. The lines corresponding to the three cases can

be distinguished because the agreement with the exact case improves as

N grows. In the figure on the right the curve which interrupts is the one

corresponding to N = 5, for which there are only 36 eigenvalues.
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Massless Scalar Field Theory

The setting is ready to solve nonperturbatively theories with a
path integral formalism

To a an action of the type:

S =
∫

d2zϕ∇2ϕ +
m2

2
ϕ2

We associate the fuzzy action

S2
θ =

1

π
Tr ϕ̂∇̂2ϕ̂

m2

2
ϕ̂2 + V (ϕ̂)

A field theory can be solved with a path integral Montecarlo or
other techniques
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A particularly simple case is when the theory is free and massless,

then

〈ϕ(z̄, z)ϕ(z̄′, z′)〉 = G(z, z′)

The path integral gives just the inverse of the Laplacian

G
(N)
θ (z, z′) =

∑N
m,n,p,q=1

e
−|z|

2+|z′|2
θ (∇̂−2)mnpqz̄pzqz′mz̄′n√

p!q!m!n!θm+n+p+q
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We can therefore compare the Green’s functions
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Comparison of the 3D and contour plot of G(z, z′) for z = 0 + 1/2i as a function of z′ .

The fuzzy case (right) is with N = 15
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Conclusions

Using Noncommutative Geometry we have described some ap-

proximations which could be used to approximate field theory

But I would like to add another possible and interesting aspect

If we are willing to give up commutativity then we open the

possibility that spacetime may be represented by matrices rather

than continuous functions, with far fewer degrees of freedom

All this still retaining the fundamental symmetries of spacetime
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