with P. Vitale & A. Zampini




Usually the way to discretize a system (for the s
differentail equation, the study of a filed theory etc.)

The algebra of fields w; defined on a lattice is just
of points with pointwise multiplication

(oY) = ery¥r

And they have very few symmetries

The former is good (renormalization, possibility to do calcula
The latter is bad, symmetries (and broken symmetries) are es
of a physical theory. We want to keep the symmetries of spac



A lattice is not just a collection of points, there are ¢
among those: derivatives, Laplacians, Dirac operato
define which type of lattice we are dealing with.

For example the derivative on the direction k on a lattice with spacing a i

901_|_E — @I

(Vo) =

So we want to find a way to obtain a finite space
as many as possible of the symmetries of the contit

Here I will present some examples of a different no
discretization which, while cutting the degrees of fre
theory, retain all basic symmetries of it.



Suppose we want to discretize the functions on a twao
torus.

One option is to consider matrices with entries the
functions on a lattice of points.

Translational symmetry is lost, apart from a small s



We can try a fuzzy approximation
Torus: x1,xz5 € [0, 1]

Functions on a torus:

2mimaq 627Tz'nac2

@(x) = > mn Pmne€

It is impossible to truncate this sum at a finite lev
product will produce higher Fourier modes



Define finite N-dimensional clock and shift matrices:

(e |

Uz

The sum is finite because _



Now the harmonics retained are finite, the space is finite dime

products is consistent at a price _

This is the Fuzzy Torus originally introduce by H. V

On a fuzzy Torus there is the U(1) x U(1) transl:
unchanged.

For example translation of angles a; in the direction k are:

i(ma1+na2)go

Pmn — € mmn



There are the two derivatives:

N N
Vip = Z mpmnUT US Vop = Z nemnU7"
m,n=1 mn=1

The spectrum of the Laplacian is the same as in
nicative case, only truncated at level N

There is also a natural integral

/90= Tre = ¢o0

If N large enough, and hence the noncommutativity s
the two spaces probed by a low energy theory wo
same



Another example is the fuzzy sphere introduced by

. T
[ X, X5] =1 EiikXk
VNN + 1)
choosing
X, = 4 L;
VNN + 1)

with the L’'s the usual angular momentum operators in the N(N + 1) repre
The Casimir of the representation becomes the cor
X{ 4+ X5+ X35 =r?

So that the [ X|'s define an approximation of the sp



The algebra is finite dimensional, but rotations act
as the usual three derivations (which are the X's tr

Again the price we have to pay is the noncommute
algebra

The algebra of rotations act in a natural way so t
retained all symmetries of the theory

Also in this case the Laplacian is the same as the
sphere, but is truncated



Let me now introduce the fuzzy disc
work in collaboration with P. Vitale & A. Zampini

Consider a function on the plane with its Taylor ex

p(Z,2) = Z Pz 2"

m,n=0

Now “quantize” the plane, using a quantity € ana
and associate to a function the operator

z —a Z—>a]L

for convenience we choose the slightly unusual normalization

[a,a'] = 0



We thus have a way to associate operators to func

0. @)

= ™m

Q) =¢= > opdal"a"
'n,:

(29 has an inverse expressed using coherent states:

2 (B) = p(z,2) = (2l §|2)



We can express operators with a density matrix not

With |n) eigenvectors of the number operator N =

T he density matrix basis has a very simple multiplic

im) (n| p) {q| = dnp |m) (q|

The analog of the Taylor expansion in terms of th
©nm 1S

|Z|2 o0 -m N

— =l 2z
o(z,z) =e 0 ©mn
m,nzzo Vnlmlgmtn




We have implicitly defined a noncommutative x product on tF

In the density matrix basis this product is the usual row by
product




Since we reduced the product to a matrix product
that we can consider the subalgebra obtained tr
expansion to a finite NV

It is the algebra obtained with the projector

N N 2n 2

PN =3 (zn)(nz)= Y —

e
n=0 n=0 nion

_r_
0

The subalgebra is clearly isomorphic N x N matrices

What sort of functions are there in this algebra?
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The disc becomes sharper as N increases, keeping

P Approxi mate ldentity

1
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Profile of the spherically symmetric function PQN fc
R2 = N0 =1 and N = 10,102,103. As N increa
becomes sharper.



The subalgebra defined by PHN is therefore made

which have mostly support on the disc of radius R =
sharply defined as N increases

We also have edge states

The edge states (z|N)(N|z) for N =10 and N = 10

Rotations are still there, obtained just multiplying the
by a phase.



Still I need more to convince you that this matrix al
do with the disc.

T he starting point to define the matrix equivalent ©
tions is:

(2| [a, ()] |2)

(2] [a, €2(p)] [2)

Note that 8,(P)' x@* P;') # Pp * (8:0) * Py but
they coincide (and the latter is simpler to implement for m



Since la and al are still infinite matrices, 8,5 a
N-+1XxN-+1 matrices

The fact that functions and “form’ live in different space is st

The laplacian is a finite operator and we can calculate its ei

compare them with the eigenvalues of the Laplacian on the d
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The first eigenvalues of the laplacian on the disc (dots) and the
(solid lines) for N = 5,10,15. The lines corresponding to the

be distinguished because the agreement with the exact ca:

N grows. In the figure on the right the curve which interrt

corresponding to N = 5, for which there are only 36 eigenvall



The setting is ready to solve nonperturbatively the
path integral formalism

To a an action of the type:

S—/d2zV2 m_22
= © <p+290

We associate the fuzzy action

1 2
S;g=="Tr soVst)?soQ + V()

7

A field theory can be solved with a path integral V
other techniques



A particularly simple case is when the theory is free a
then

(p(z,2)p(Z, 2")) = G(z, 2)
The path integral gives just the inverse of the Lapl.

P
My =y T O Dyt
0 ’ m,n,p,q=1 Vplg!mInlgmtntprtq




We can therefore compare the Green’s functions

Comparison of the 3D and contour plot of G(z,z') for z=0+41/2i as
The fuzzy case (right) is with N = 15



Conclusions

Using Noncommutative Geometry we have describ:
proximations which could be used to approximate fi

But I would like to add another possible and interesting aspect
If we are willing to give up commutativity then \

possibility that spacetime may be represented by ma
than continuous functions, with far fewer degrees o

All this still retaining the fundamental symmetries c



