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Nota. I seguenti appunti sono in forma provvisoria e sono ad esclusivo

uso interno del corso. Sono in inglese perché tratti in parte da un libro in

preparazione con G. Landi e R.J. Szabo.

1 Quantum and Classical Mechanics

Rigorously speaking in nature there exist only (relativistic) quantum mechanical systems,

which in some limits behave in a way well modelled by classical mechanics. The classical

limit is well studied and understood, even if it is not free of ambiguities, often related to

the measurement process. Since our sizes, energies etc. make us experience a word well

described by the classical models we are in general more familiar with classical quantities,

and define the quantum mechanical ones by analogy. For example quantum position and

momenta (operators) and their connection with the analogous quantities on the classical

phase space. One of the main differences is that the former do not commute, so that the

quantum phase space becomes noncommutative, and hence not a space in the usual sense!

Instead of an ensemble of points we have some operators acting on some Hilbert space,

or better an algebra of operators and a set of density matrices. So we need to understand

this quantum phase space, and how to obtain it (when and if possible) from the classical

one.

At the level of abstract definitions one could easily define the noncommutative algebra

of a quantum phase space (at least in the simplest cases) as the one generated by the

position and momentum operators acting on a separable Hilbert space. Looking at the

algebra of observables, one can even take the point of view of considering all observables

(in the sense of Dirac), that is the self-adjoint elements of the huge algebra of all bounded

operators on the Hilbert space. Those definitions are however not particularly useful

without making a connection with classical mechanics, understanding the processes of

quantization. This is a very large topic, and we limit ourselves to a choice of some

aspects. The bibliography at the end is by no means complete and only suggests some

further readings on the subject.

Both quantum and classical mechanics study the evolution in time of physical systems.

Their original setting is common, the evolution of systems of point particles, albeit in dif-

ferent regimes and with different levels of approximations. The two theories are, however,
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fundamentally different, not so much in that in a variety of examples they give different

answers, but in that they ask different questions. While classical mechanics is concerned

with position, trajectories, and in general with the state of the system in phase space (or

in the space of positions and velocities), in the quantum theory the questions asked deal

with probabilities, possible results of measurement etc. The connections between the two

theories are the problems of quantization and of the classical limit.

2 The Phase Space in Classical Mechanicsclassphasespace

Classical mechanics is naturally a geometric theory. In both its Lagrangian and Hamil-

tonian versions the natural framework in which to describe it are manifolds and vector

bundles. In the Hamiltonian point of view the states of a system are described by the

phase space M , a manifold which is the cotangent bundle of the space of configurations

(positions) of the particles, or, more generally, a generic manifold in which a Poisson

Bracket is defined. In all generality a Poisson bracket is a map which gives, for each pair

of smooth functions on M , another smooth function on M :

{·, ·} : C∞(M)× C∞(M) → C∞(M) . (2.1)

It is linear in both arguments, antisymmetric, and satisfies the Jacobi identity,

0 = {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} , (2.2)

i.e. it defines a Lie bracket on C∞(M). In addition it satisfies the Leibnitz rule,

{f, gh} = g{f, h}+ {f, g}h , (2.3)

i.e. it is a derivation of C∞(M). To give a Poisson bracket is equivalent to the specification

of a Poisson bivector Λ

{f, g} = Λ(df, dg) , (2.4)

which in term of local coordinates ui for M becomes:

{f, g} = Λij ∂f

∂ui

∂g

∂uj
, (2.5)

where (Λij) is antisymmetric. Functions on M (possibly with an explicit dependence on

time) are the classical observables. Given a Hamiltonian function H, their time evolution

is given in terms of the Poisson bracket as

df

dt
=

∂f

∂t
+ {H, f} . (2.6)

For an n dimensional configuration space Q, M = T ∗Q is the cotangent bundle. We

can then define a symplectic structure which is a nondegenerate closed two-form ω, whose
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inverse is the bivector field Λ. When Q = Rn, then M = R2n and we can find global

coordinates ui on M for which the antisymmetric matrix (Λij) is in its canonical form∗

(Λij) =

(
0 11n

−11n 0

)
. (2.7) Lambdacanon

These coordinates (called Darboux coordinates) can be interpreted as positions and mo-

menta:

qi = ui , pi = ui+n , i = 1 . . . n , (2.8) uphasespace

and in this case

{f, g} =
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi
(2.9) Poissonbracanon

3 The Phase Space in Quantum Mechanicsquaphasespace

In the quantum mechanics of systems with a finite number of degrees of freedom, positions

and momenta become noncommuting operators on a Hilbert space. Because of Heisen-

berg’s uncertainty relation (a direct consequence of the noncommutativity of operators)

it is impossible to consider the quantum phase space as a usual geometric object. Now

the observables, rather than being functions on a manifold, can be seen as operators on

an (infinite dimensional) Hilbert space. A state is no longer a point in phase space, but

a vector in the Hilbert space, or rather a density matrix, that can be regarded as a map

from (hermitean) operators to real numbers.

In textbooks, quantum mechanical point particle systems are traditionally introduced

from the quantization of a corresponding classical system for which M = R2n. This is

via the correspondence principle, which associates to position and momentum variables

operators on the Hilbert space H = L2(Q). The correspondence is

q̂i → qi

p̂i → − i ~
∂

∂qi

(3.10) correspon

where the hat distinguishes the quantum operator from the classical variable†. The well

known consequence of this relation is the noncommutativity of position and momentum:

[q̂i, p̂j] = i ~δi
j , (3.11) cancommrel

which in turn leads to Heisenberg uncertainty principle

∆q̂i∆p̂j ≥ ~
2
δi
j . (3.12) Heisunc

We are thus forced to a “pointless” geometry. Classical observables are promoted to

operators and the Poisson bracket is replaced by a commutator:

{f, g} → − i

~
[f̂ , ĝ] (3.13) canqua

∗When Q 6= Rn this is only possible locally, chart by chart.
†We will soon abandon this notation when there is no possibility of confusion between the quantum

operator and the classical quantity.

3



4 One parameter groups and Weyl Systems

There is a first problem because both position and momenta are unbounded operators.

It is easy to see (Wintner theorem) that if two operators have a constant commutator, at

least one of them in unbounded. The proof is simple, if both p̂ and q̂ were bounded, so

would be

q̂np̂− p̂q̂n = i ~nq̂n−1 , (4.14)

and therefore

~n‖q̂‖n−1 ≤ 2‖p̂‖ ‖q̂‖n , (4.15)

which implies

‖p̂‖ ‖q̂‖ ≥ ~n

2
(4.16)

for all values of n, which is impossible if both ‖p̂‖ and ‖q̂‖ are finite.

The solution proposed by Weyl is to consider not the operators themselves, but the

symmetries they generate: translations in the space of position and momenta. In other

words to exponentiate them. Consider then two one parameter groups, i.e. two represen-

tations of the abelian group on the Hilbert space by unitary operators:

U(s)ψ(x) = ψ(x + s)

V (t)ψ(x) = e i xtψ(x) (4.17)

a direct calculation shows that

U(s)V (t) = e i stV (t)U(s) (4.18) weylpq

To these two representations correspond (by Stone Theorem) two Hermitean operators

defined as

lim
s→0

U(s)ψ − ψ

s
= i p̂ψ

lim
t→0

V (t)ψ − ψ

t
= i q̂ψ . (4.19)

The statement of unboundedness translates into the fact that the above limits are well

defined only for a subspaces of the Hilbert space (domain of the operator). It is important

to notice that the symmetries of translation in configuration or momentum space are well

defined also in classical mechanics as canonical transformations, whose generators are

classical positions and momenta.

We can be more general, and consider a general symplectic vector field S, i.e. a vector

field on which a symplectic form is defined, as we did at the end of Sect. 2. The canonical

quantization is then a map U from S to unitary operators with the property

W (X + Y ) = e
i
2

ω(X,Y )W (X)W (Y ) = e −
i
2

ω(X,Y )W (Y )W (X) (4.20)

Sush a set of unitary operators is called a Weyl system. If it is possible to divide the

symplectic space into a sum of position and momenta space, S = Spos⊕Smom, we find as

a particular one-dimensional case (4.18).
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5 The Weyl and Wigner Correspondences

We now establish a connection between the classical and quantum phase spaces, at least

for systems with a well defined classical counterpart. We want to associate to each clas-

sical observable an operators on H. This is done by the Weyl map. Starting from the

correspondence principle (3.10), an immediate problem to solve is an ordering ambiguity.

Consider, for example‡, the classical function: p2q. To it there correspond various quan-

tum operators: p̂2q̂, p̂q̂p̂, q̂p̂2, or any linear combination of these with coefficients which

sum to 1. Another problem is the fact that p̂ and q̂ are unbounded operators, with the

consequent problem of definition of domains. To solve these problems we introduce the

unitary operator

W (u) = W (η, ξ) = e
i

2~ (ξp̂+ηq̂) , (5.21) defW

for u = (η, ξ) ∈ R2. This implies the choice of symmetric ordering, and W is well defined

over all of H.

From (3.11) and the Baker-Campbell-Hausdorff formula it follows that

W (u)W (u′) = e
i
~ω(u,u′)W (u + u′) (5.22) defW2

with ω(u, u′) = ξη′ − ηξ′ the symplectic structure. This is therefore a Weyl system.

The W ’s can be used as a basis to define an operatorial transform Ω, which associates

to each function of p and q the operator

f(p, q) → Ω̂(f)(p̂, q̂) =

∫
dξdηf̃(ξ, η)W (ξ, η) , (5.23) Weylmap

where

f̃(ξ, η) =

∫
dqdp

(2π)2
f(p, q) e −

i
2
(ηq+ξp) . (5.24)

is the Fourier transform of f . Were it not for the hat on p and q in (5.21), the expres-

sion (5.23) would just Fourier transform back f , instead it associates an operator to each

function on the classical phase space. If the function f is real the corresponding operator

will be hermitean. The Weyl map has an inverse, called the Wigner map, which maps an

operator F into a function, using the identity

Tr e
i
~ (ηq̂+ξp̂) = δ(η − ξ) (5.25)

one gets

Ω−1(F )(p, q) =

∫
dηdξ

(2π)2~
e − i (ηq+ξp) Tr F e

i
~ (ξp̂+ηq̂) (5.26)

Different orderings are possible via the insertion in (5.23) of a “weight” function

w(ξ, η), easily calculated with the Baker-Campbell-Hausdorff formula. The Weyl ordering

described above corresponds to w = 1. Normal (Wick) ordering in which a† = p̂ − i q̂ is

always to the left of a corresponds to w = e −
1
4~ (η2+ξ2). The ordering of q̂ to the left of p̂

corresponds to w = e − i ηξ/2~.

‡To avoid the proliferation of indices we consider only the one dimensional case in this section.
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6 Wigner Distributions

Wigner made an attempt to perform quantum mechanics in phase space attempting to

find the analog of a wave function. The analogy is not perfect but the tecniques is useful

all the same. Given a classical function and a quantum mechanical pure state we can

express 〈
Ω̂(f(p, q))

〉
=

∫
dp dqf(p, q)W (p, q) (6.27)

where

W (p, q) :=
1

2π

∫
dyψ∗(q +

y

2
) e i p̂yψ(q − y

2
) (6.28)

The Wigner distribution has the property that

∫
dpW = |ψ(q)|2

∫
dqW = |ψ̃(p)|2 (6.29)

but it is not defined positive, and hence cannot be considered as a probability distribution.

Given a non pure state represented by a density matrix ρ =
∑

n |ψn〉 ρn 〈ψn| the

corresponding Wigner distribution will be

W (p, q) =
∑

n

ρn
1

2π

∫
dyψ∗n(q +

y

2
) e i p̂yψn(q − y

2
) (6.30)

7 Moyal Quantization and ProductMoyalquant

With the Weyl map and its inverse we associate to a classical function on phase space

an operator, and viceversa. In other words we map classical commuting observables to

quantum noncommuting ones. The former correspond to an ordinary manifold, while

the latter describe, in some sense, a noncommutative space. In this section we will view

quantum mechanics as a deformation of classical mechanics, bearing in mind that not

every quantum system can be viewed as the quantization of a classical one. Nevertheless

classical limits do exist and we will see that for classical systems the corresponding quan-

tum observables can be seen as deformations of the classical ones, driven by the “small”

parameter ~. As we said in section 2 the main characteristic of a classical phase space is

that it is a Poisson manifold. Functions on it are multiplied in the usual pointwise way,

they form a commutative algebra in the language of subsequent chapters. We now define

a new product to describe a quantum system, and it is important that classical physics is

recovered, at least in some sense, in the limit ~ → 0. Given two functions on a classical

phase space with the usual Poisson bracket (2.9), taking the commutator of the operators

obtained with the Weyl map, and then going back to the classical functions with the

Wigner map, the result is not the original Poisson bracket (as it might be expected), but
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an expression which agrees with the latter only to first order in ~:

Ω−1 ([Ω(f), Ω(g)]) =
∞∑

k=1

(
i ~
2

)2k+1

f (
←
∂ p

→
∂ q −

←
∂ q

→
∂ p)

2k+1 g (7.31) Moyalbra

where the notation
←
∂ (resp.

→
∂ ) means that the partial derivative acts on the left (resp.

left).

Equation (7.31) suggests the definition of a bracket among functions which should

describe quantization. For any phase space with constant Poisson structure Λ, the Moyal

bracket is defined as:

[f, g]? :=
∞∑

k=0

(
i ~
2

)2k+1

Λ2k+1(df, dg) . (7.32) Moyalbralambda

Using the Weyl map we can define a new deformed product, which we call§ the ?-product

f ? g = Ω−1(Ω(f)Ω(g)) , (7.33)

so that

[f, g]? = f ? g − g ? f . (7.34)

Using the explicit expression of the Weyl map the explicit differential form of the product

is

(f ? g)(u) := f(u) exp

(
i ~
2

←
∂ i Λij

→
∂ j

)
g(u) , (7.35) defstar

where u is as in (2.8).

With this deformed product it is possible reformulate time evolution of quantum op-

erators as evolution on classical phase space

df

dt
=

∂f

∂t
+

i

~
[f,H]? (7.36)

8 General ∗ Products

The ? product defined in the previous subsection is intimately tied with the canonical

structure (2.7), and in turn with the usual commutation relation (3.11). It provides a

way to look at quantum mechanics as a deformation and led to the generic quantization

under what is called deformation quantization. This is based on a generic deformation of

the product of functions on a Poisson manifold M , which to first order in the parameter ~
has a commutator proportional to the Poisson bracket. In a sense quantum mechanics is

seen as a dynamics on a noncommutative space. To a particular classical manifold there

can correspond several quantum phase spaces, all of which reduce to the same classical

case in the limit of ~→ 0. The ? -product is but one possible deformation.

§It is also called the Grönewold-Moyal-Weyl product.
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Deformation quantization of a Poisson manifod consists in finding a deformation of

the algebra, with the additional property that to first order the ∗ commutator reduces

to the Poisson bracket. The conditions for a well defined associative product are very

difficult to satisfy. For instance using the definition (7.35) for a nonconstant Λ tensor

would give a nonassociative product. Given a Poisson manifold it is highly nontrivial to

prove that it is always possible to find a ∗ product whose commutator reduces, to first

order in the deformation parameter, to the Poisson bracket. The problem for a generic

Poisson manifold has been solved by Kontsevich who was awarded the Field medal for it.

It
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